Mathematical modeling in environmental science
General data
Course ID: | WF-OB-MODM |
Erasmus code / ISCED: |
07.2
|
Course title: | Mathematical modeling in environmental science |
Name in Polish: | Modelowanie matematyczne w naukach o środowisku |
Organizational unit: | Center for Ecology and Ecophilosophy |
Course groups: |
(in Polish) Przedmioty obowiązkowe dla 2 roku studiów II stopnia magisterskich |
ECTS credit allocation (and other scores): |
0 OR
3.00
(depends on study program)
|
Language: | Polish |
Subject level: | intermediate |
Learning outcome code/codes: | OB2_W12 OB2_U01 OB2_U09 OB2_U13 OB2_K07 |
Short description: |
The aim is to learn basis of mathematical modelling in biology using NetLogo programming language and translating description of biological problems into mathematical and programming languages.The lecture will be illustrated by basics ecological models. YTheir features will be disccused. Basic information from mathematics and computer use are recommended. |
Full description: |
Modelling in biology. Mathematics as an language for natural sciences. Description of time and space in mathematical models. Statictical or empirical models. Vollenweide'sr model as an example. Habitat models on example of scenariuos Vistulla valley transformations. Model LARCH and RAMAS. NetLogo as a usful programming tool. Population growth - linear, exponential and logistic model. Deterministic chaos. Stochastic models of small populations. Stability - its mathematical formulation and ecological interpretations. Are ecological systems stable? Stability and complexity question. Dynamics of two competing population. Predator-prey system dynamics. Oscillations and limit cycles. Models of matter cycling in ecosystems. Phosporus cycling in a lake as an example of ecosystem's functioning model. Forest dynamics models. Cellural automata. Individual-based modeling and its differences with classical modeling. Fractal modelling - unitary and modular organisms. Speciation and extinction of species. |
Bibliography: |
Uchmański J. 1992. Klasyczna ekologia matematyczna.PWN. Uchmański J. 2022. Modele matematyczne w ekologii. Wydawnictwa UKSW. Białynicki-Birula I., Białynicka-Birula I. 2002 Modelowanie rzeczywistości. Prószyński i S-ka Bodnar M. 2008. Zbiór zadań z matematyki dla biologów. Wydawnictwa Uniwersytetu Warszawskiego, Warszawa Czarnowski D. S., Romanowski J. M., Stiepanowa N. W. 1974. Co to jest biofizyka matematyczna. PWN. Foryś U. 2005. Matematyka w biologii. Wydawnictwa Naukowo-Techniczne, Warszawa. Murray J.D. 1989. Mathematical biology. Springer-Verlag. Murray J. D. 2006. Wprowadzenie do biomatematyki. Wydawnictwo Naukowe PWN, Warszawa. Wit R. 1994. Wykłady o modelowaniu w fizyce medycznej. Uniwersytet Jagielloński. Wrzosek D. 2008. Matematyka dla biologów. Wydawnictwa Uniwersytetu Warszawskiego, Warszawa |
Efekty kształcenia i opis ECTS: |
Knowledge EF1 - Student knows basic models used in ecology Abilities EK2 - Student is able to build simple model of an ecological process. Competence EK3 - Student knows that application of maqthematical and compouters methods is useful in ecology and nature protection. |
Assessment methods and assessment criteria: |
Score on basis of the end test. The presence and activity during lectures are also important. |
Classes in period "Winter semester 2021/22" (past)
Time span: | 2021-10-01 - 2022-01-31 |
Go to timetable
MO TU W TH WAR
FR |
Type of class: |
Workshops, 30 hours, 30 places
|
|
Coordinators: | Janusz Uchmański | |
Group instructors: | Janusz Uchmański | |
Course homepage: | https://teams.microsoft.com/l/team/19%3a086ba876377e4260830775a8fb378f80%40thread.tacv2/conversations?groupId=2c17b0f6-9ca0-424c-85c1-d57846f4a939&tenantId=12578430-c51b-4816-8163-c7281035b9b3 | |
Students list: | (inaccessible to you) | |
Credit: |
Course -
examination
Workshops - examination |
|
(in Polish) E-Learning: | (in Polish) E-Learning z podziałem na grupy |
|
Short description: |
The aim is to learn basis of mathematical modelling in biology using NetLogo programming language and translating description of biological problems into mathematical and programming languages.The lecture will be illustrated by basics ecological models. YTheir features will be disccused. Basic information from mathematics and computer use are recommended. |
|
Full description: |
Modelling in biology. Mathematics as an language for natural sciences. Description of time and space in mathematical models. Statictical or empirical models. Vollenweide'sr model as an example. Habitat models on example of scenariuos Vistulla valley transformations. Model LARCH and RAMAS. NetLogo as a usful programming tool. Population growth - linear, exponential and logistic model. Deterministic chaos. Stochastic models of small populations. Stability - its mathematical formulation and ecological interpretations. Are ecological systems stable? Stability and complexity question. Dynamics of two competing population. Predator-prey system dynamics. Oscillations and limit cycles. Models of matter cycling in ecosystems. Phosporus cycling in a lake as an example of ecosystem's functioning model. Forest dynamics models. Cellural automata. Individual-based modeling and its differences with classical modeling. Fractal modelling - unitary and modular organisms. Speciation and extinction of species. |
|
Bibliography: |
Białynicki-Birula I., Białynicka-Birula I. 2002 Modelowanie rzeczywistości. Prószyński i S-ka Bodnar M. 2008. Zbiór zadań z matematyki dla biologów. Wydawnictwa Uniwersytetu Warszawskiego, Warszawa Czarnowski D. S., Romanowski J. M., Stiepanowa N. W. 1974. Co to jest biofizyka matematyczna. PWN. Foryś U. 2005. Matematyka w biologii. Wydawnictwa Naukowo-Techniczne, Warszawa. Murray J.D. 1989. Mathematical biology. Springer-Verlag. Murray J. D. 2006. Wprowadzenie do biomatematyki. Wydawnictwo Naukowe PWN, Warszawa. Uchmański J. 1992. Klasyczna ekologia matematyczna. PWN. Wit R. 1994. Wykłady o modelowaniu w fizyce medycznej. Uniwersytet Jagielloński. Wrzosek D. 2008. Matematyka dla biologów. Wydawnictwa Uniwersytetu Warszawskiego, Warszawa |
|
Wymagania wstępne: |
High school level of mathematics |
Classes in period "Winter semester 2022/23" (past)
Time span: | 2022-10-01 - 2023-01-31 |
Go to timetable
MO TU W TH WAR
FR |
Type of class: |
Workshops, 30 hours, 30 places
|
|
Coordinators: | Janusz Uchmański | |
Group instructors: | Janusz Uchmański | |
Course homepage: | https://teams.microsoft.com/l/team/19%3a086ba876377e4260830775a8fb378f80%40thread.tacv2/conversations?groupId=2c17b0f6-9ca0-424c-85c1-d57846f4a939&tenantId=12578430-c51b-4816-8163-c7281035b9b3 | |
Students list: | (inaccessible to you) | |
Credit: |
Course -
examination
Workshops - examination |
|
(in Polish) E-Learning: | (in Polish) E-Learning z podziałem na grupy |
|
Short description: |
The aim is to learn basis of mathematical modelling in biology using NetLogo programming language and translating description of biological problems into mathematical and programming languages.The lecture will be illustrated by basics ecological models. YTheir features will be disccused. Basic information from mathematics and computer use are recommended. |
|
Full description: |
Modelling in biology. Mathematics as an language for natural sciences. Description of time and space in mathematical models. Statictical or empirical models. Vollenweide'sr model as an example. Habitat models on example of scenariuos Vistulla valley transformations. Model LARCH and RAMAS. NetLogo as a usful programming tool. Population growth - linear, exponential and logistic model. Deterministic chaos. Stochastic models of small populations. Stability - its mathematical formulation and ecological interpretations. Are ecological systems stable? Stability and complexity question. Dynamics of two competing population. Predator-prey system dynamics. Oscillations and limit cycles. Models of matter cycling in ecosystems. Phosporus cycling in a lake as an example of ecosystem's functioning model. Forest dynamics models. Cellural automata. Individual-based modeling and its differences with classical modeling. Fractal modelling - unitary and modular organisms. Speciation and extinction of species. |
|
Bibliography: |
Białynicki-Birula I., Białynicka-Birula I. 2002 Modelowanie rzeczywistości. Prószyński i S-ka Bodnar M. 2008. Zbiór zadań z matematyki dla biologów. Wydawnictwa Uniwersytetu Warszawskiego, Warszawa Czarnowski D. S., Romanowski J. M., Stiepanowa N. W. 1974. Co to jest biofizyka matematyczna. PWN. Foryś U. 2005. Matematyka w biologii. Wydawnictwa Naukowo-Techniczne, Warszawa. Murray J.D. 1989. Mathematical biology. Springer-Verlag. Murray J. D. 2006. Wprowadzenie do biomatematyki. Wydawnictwo Naukowe PWN, Warszawa. Uchmański J. 1992. Klasyczna ekologia matematyczna. PWN. Wit R. 1994. Wykłady o modelowaniu w fizyce medycznej. Uniwersytet Jagielloński. Wrzosek D. 2008. Matematyka dla biologów. Wydawnictwa Uniwersytetu Warszawskiego, Warszawa |
|
Wymagania wstępne: |
High school level of mathematics |
Classes in period "Winter semester 2023/24" (past)
Time span: | 2023-10-01 - 2024-01-31 |
Go to timetable
MO TU W TH WAR
FR |
Type of class: |
Workshops, 30 hours, 30 places
|
|
Coordinators: | Janusz Uchmański | |
Group instructors: | Janusz Uchmański | |
Course homepage: | https://teams.microsoft.com/l/team/19%3a086ba876377e4260830775a8fb378f80%40thread.tacv2/conversations?groupId=2c17b0f6-9ca0-424c-85c1-d57846f4a939&tenantId=12578430-c51b-4816-8163-c7281035b9b3 | |
Students list: | (inaccessible to you) | |
Credit: |
Course -
examination
Workshops - examination |
|
(in Polish) E-Learning: | (in Polish) E-Learning z podziałem na grupy |
|
Short description: |
The aim is to learn basis of mathematical modelling in biology using NetLogo programming language and translating description of biological problems into mathematical and programming languages.The lecture will be illustrated by basics ecological models. YTheir features will be disccused. Basic information from mathematics and computer use are recommended. |
|
Full description: |
Modelling in biology. Mathematics as an language for natural sciences. Description of time and space in mathematical models. Statictical or empirical models. Vollenweide'sr model as an example. Habitat models on example of scenariuos Vistulla valley transformations. Model LARCH and RAMAS. NetLogo as a usful programming tool. Population growth - linear, exponential and logistic model. Deterministic chaos. Stochastic models of small populations. Stability - its mathematical formulation and ecological interpretations. Are ecological systems stable? Stability and complexity question. Dynamics of two competing population. Predator-prey system dynamics. Oscillations and limit cycles. Models of matter cycling in ecosystems. Phosporus cycling in a lake as an example of ecosystem's functioning model. Forest dynamics models. Cellural automata. Individual-based modeling and its differences with classical modeling. Fractal modelling - unitary and modular organisms. Speciation and extinction of species. |
|
Bibliography: |
Białynicki-Birula I., Białynicka-Birula I. 2002 Modelowanie rzeczywistości. Prószyński i S-ka Bodnar M. 2008. Zbiór zadań z matematyki dla biologów. Wydawnictwa Uniwersytetu Warszawskiego, Warszawa Czarnowski D. S., Romanowski J. M., Stiepanowa N. W. 1974. Co to jest biofizyka matematyczna. PWN. Foryś U. 2005. Matematyka w biologii. Wydawnictwa Naukowo-Techniczne, Warszawa. Murray J.D. 1989. Mathematical biology. Springer-Verlag. Murray J. D. 2006. Wprowadzenie do biomatematyki. Wydawnictwo Naukowe PWN, Warszawa. Uchmański J. 1992. Klasyczna ekologia matematyczna. PWN. Wit R. 1994. Wykłady o modelowaniu w fizyce medycznej. Uniwersytet Jagielloński. Wrzosek D. 2008. Matematyka dla biologów. Wydawnictwa Uniwersytetu Warszawskiego, Warszawa |
|
Wymagania wstępne: |
High school level of mathematics |
Classes in period "Winter semester 2024/25" (past)
Time span: | 2024-10-01 - 2025-01-31 |
Go to timetable
MO TU W TH WAR
FR |
Type of class: |
Workshops, 30 hours, 30 places
|
|
Coordinators: | Janusz Uchmański | |
Group instructors: | Janusz Uchmański | |
Course homepage: | https://teams.microsoft.com/l/team/19%3a086ba876377e4260830775a8fb378f80%40thread.tacv2/conversations?groupId=2c17b0f6-9ca0-424c-85c1-d57846f4a939&tenantId=12578430-c51b-4816-8163-c7281035b9b3 | |
Students list: | (inaccessible to you) | |
Credit: |
Course -
examination
Workshops - examination |
|
(in Polish) E-Learning: | (in Polish) E-Learning z podziałem na grupy |
|
Type of subject: | optional with unlimited choices |
|
(in Polish) Grupa przedmiotów ogólnouczenianych: | (in Polish) nie dotyczy |
|
Short description: |
The aim is to learn basis of mathematical modelling in biology using NetLogo programming language and translating description of biological problems into mathematical and programming languages.The lecture will be illustrated by basics ecological models. YTheir features will be disccused. Basic information from mathematics and computer use are recommended. |
|
Full description: |
Modelling in biology. Mathematics as an language for natural sciences. Description of time and space in mathematical models. Statictical or empirical models. Vollenweide'sr model as an example. Habitat models on example of scenariuos Vistulla valley transformations. Model LARCH and RAMAS. NetLogo as a usful programming tool. Population growth - linear, exponential and logistic model. Deterministic chaos. Stochastic models of small populations. Stability - its mathematical formulation and ecological interpretations. Are ecological systems stable? Stability and complexity question. Dynamics of two competing population. Predator-prey system dynamics. Oscillations and limit cycles. Models of matter cycling in ecosystems. Phosporus cycling in a lake as an example of ecosystem's functioning model. Forest dynamics models. Cellural automata. Individual-based modeling and its differences with classical modeling. Fractal modelling - unitary and modular organisms. Speciation and extinction of species. |
|
Bibliography: |
Białynicki-Birula I., Białynicka-Birula I. 2002 Modelowanie rzeczywistości. Prószyński i S-ka Bodnar M. 2008. Zbiór zadań z matematyki dla biologów. Wydawnictwa Uniwersytetu Warszawskiego, Warszawa Czarnowski D. S., Romanowski J. M., Stiepanowa N. W. 1974. Co to jest biofizyka matematyczna. PWN. Foryś U. 2005. Matematyka w biologii. Wydawnictwa Naukowo-Techniczne, Warszawa. Murray J.D. 1989. Mathematical biology. Springer-Verlag. Murray J. D. 2006. Wprowadzenie do biomatematyki. Wydawnictwo Naukowe PWN, Warszawa. Uchmański J. 1992. Klasyczna ekologia matematyczna. PWN. Wit R. 1994. Wykłady o modelowaniu w fizyce medycznej. Uniwersytet Jagielloński. Wrzosek D. 2008. Matematyka dla biologów. Wydawnictwa Uniwersytetu Warszawskiego, Warszawa |
|
Wymagania wstępne: |
High school level of mathematics |
Copyright by Cardinal Stefan Wyszynski University in Warsaw.