Cardinal Stefan Wyszynski University in Warsaw - Central Authentication System
Strona główna

Physics IV

General data

Course ID: WM-CH-F4
Erasmus code / ISCED: (unknown) / (0533) Physics The ISCED (International Standard Classification of Education) code has been designed by UNESCO.
Course title: Physics IV
Name in Polish: Fizyka IV
Organizational unit: Faculty of Mathematics and Natural Sciences. School of Exact Sciences.
Course groups:
ECTS credit allocation (and other scores): 6.00 Basic information on ECTS credits allocation principles:
  • the annual hourly workload of the student’s work required to achieve the expected learning outcomes for a given stage is 1500-1800h, corresponding to 60 ECTS;
  • the student’s weekly hourly workload is 45 h;
  • 1 ECTS point corresponds to 25-30 hours of student work needed to achieve the assumed learning outcomes;
  • weekly student workload necessary to achieve the assumed learning outcomes allows to obtain 1.5 ECTS;
  • work required to pass the course, which has been assigned 3 ECTS, constitutes 10% of the semester student load.

view allocation of credits
Language: Polish
(in Polish) Dyscyplina naukowa, do której odnoszą się efekty uczenia się:

physical sciences

Subject level:

elementary

Learning outcome code/codes:

Lectures:

FIZ1_W02, FIZ1_W03, FIZ1_W04, FIZ1_W05, FIZ1_W06, FIZ1_W09, FIZ1_W10


Exercises:

FIZ1_U01, FIZ1_U03, FIZ1_U04, FIZ1_K06

Preliminary Requirements:

Physics I, II, III

Short description:

The fourth part of General Physics on the atomic structure of matter.

Full description:

Course program (30 hours of lectures and 30 hours of tutorials):

1. The corpuscular-wave nature of electromagnetic radiation. Photoelectric phenomenon. Photochemical phenomenon. Compton phenomenon. Lebedev's experience.

2. The de Broglie hypothesis. Phase and group velocity of de Broglie waves. Schrödingera-Kleina-Gordona wave equation.

3. Experimental confirmation of the de Broglie hypothesis. Examples of experiments confirming the wave-particle nature of elementary particles, atoms and molecules.

4. Electron in a finite potential well. Two- and three-dimensional electron traps. Electron wave function. Other electron traps: nanocrystals, quantum dots, quantum pens. Electron detection probability density.

5. Step potential for electron energy higher / lower than threshold height. Potential in the form of a barrier.

6. Models of atoms: Thomson, Rutherford, Bohr (Bohr's postulates), contemporary Bohr-Sommerfeld. The hydrogen atom: energy levels, series in the emission spectrum, quantum numbers.

7. Basic properties of atoms. Franck-Hertz experiment - confirmation of discrete stationary states postulated in the Bohr model. Einstein-de Hass experiment and Barnett's experiment - coupling angular momentum and magnetic moment of individual atoms. Stern-Gerlach experiment - electron spin.

8. Atoms in a magnetic field - Zeeman effect: anomalous, normal. Paschen-Back effect. Atom in an electric field - Stark effect.

9. Construction of the periodic table. X-rays and element numbering - the Mosley experiment. Paulie's prohibition. Hund's rules.

10. Band theory of solids. Electrical properties of solids: insulators, semiconductors (donor and acceptor levels), metals, superconductors. Semiconductor diode. Transistor.

11. Lasers and laser light. Spontaneous and forced emission, inversion of fillings. Helium-neon laser.

12. Raman scattering - a method of detecting the oscillatory-rotational structure of molecules.

13. Properties of atomic nuclei. The path of nuclide stability, radioactive decay. Radioactive series. The law of radioactive decay. The fission and synthesis of atomic nuclei.

14. Drop model of the atomic nucleus. Bethe-Weizsäcker formula, conclusions resulting from it. The shell model of the atomic nucleus. Magic numbers.

15. Elementary particles and their classification. Quark model of elementary particles. Multiplets with specific spin and parity. Quarks, gluons, color concept.

Description prepared by: Paweł Pęczkowski

Bibliography:

[1] Robert Eisberg, Robert Resnick, Fizyka kwantowa, atomów, cząsteczek, ciała stałego, jąder i cząstek elementarnych, PWN, Warszawa, 1983.

[2] Jerzy Ginter." Fizyka fal. Fale w ośrodkach jednowymiarowych. Fale w ośrodkach niejednorodnych", t.1, PWN, Warszawa, 1993.

[3] Jerzy Ginter." Fizyka fal. Promieniowanie i dyfrakcja. Stany związane", t.2, PWN, Warszawa, 1993.

[4] Hermann Haken, Hans C. Wolf, "Fizyka molekularna z elementami chemii kwantowej", PWN, Warszawa, 1998.

[5] Hermann Haken, Hans C. Wolf, Atomy i kwanty. Wprowadzenie do współczesnej spektroskopii atomowej, PWN, Warszawa, 2002.

[6] David Halliday, Robert Resnick, Jearl Walker, "Podstawy fizyki", t.5, PWN, Warszawa, 2007.

[7] Paweł Pęczkowski, "Tajemnicza mechanika kwantowa. Doświadczenia ukazujące korpuskularno-falową naturę materii", t.1, Oficyna Wydawnicza ŁOŚGraf, Warszawa, 2011.

[8] Paweł Pęczkowski, "Tajemnicza mechanika kwantowa. Doświadczenia ukazujące kwantowe własności atomów i cząstek elementarnych", t.2, ICMB, Warszawa, 2015.

[9] Zofia Leś, Podstawy fizyki atomu, PWN, Warszawa, 2021.

Supplementary literature (original papers):

- L. de Broglie, "Wave and quanta", Nature (London) 112, 540, 1923.

- C.J. Davisson, L.H. Germer, "The scattering of electrons by a single crystal of nickel", Nature (London) 119, 558, 1927.

- C. Jönsson, "Electron diffraction at multiple slits", Am. J. Phys. 41(1), 4, 1974.

- A. Zeilinger, et al., "Single and double-slit diffraction of neutrons", Rev. Mode. Phys. 60, 4, 1988.

- O. Cornal, J. Mlynek, "Young's double-slit experiment with atoms: a simple atom interferometer", Phys. Rev. Lett. 66, 2689, 1991.

- O. Nairz, M. Arndt, A. Zellinger, "Quantum interference experiments with large molecules", Am. J. Phys. 71(4), 319, 2003.

- L. Hackermüller, K. Hornberger, et al., "The wave nature of biomolecules and fluorofullerenes", Phys. Rev. Lett. 91, 090408, 2003.

- N. Bohr, "On the constitution of atoms and molecules", Phil. Mag. 26, 1, 1913.

- J. Franck, G. Hertz, "Über Zusammenstösse zwischen Elektronen und den Molekülen des Quecksilberdampfes und die Ionisierungsspannung desselbe"n, Verh. DPG 16, 457, 1914.

- W. Gerlach, O. Stern, "Der experimentelle Nachweis des magnetischen Moments des Silberatoms", Z. Phys. 8, 110, 1922.

- W. Gerlach, O. Stern, "Der experimentelle Nachweis der Richtungsquantlung in Magnetfield", Z. Phys. 9, 349, 1922.

- A. Einstein, W.J. de Haas, "Experimenteller Nachweis der Ampèreschen Molekulaströme", Deut. Phys. Gesell. 17, 152, 1915.

- D.J. Barnett, "The magnetization of iron, nickel, and cobalt by rotation and the nature of the magnetic molecule", Phys. Rev. 10, 7, 1917.

- P. Zeeman, "On the influence of magnetism on the nature of the light emitted by substance", Phil. Mag. 43, 226, 1897.

Efekty kształcenia i opis ECTS:

a) Knowledge. The student has knowledge of the phenomena and laws of nuclear and atomic physics and the basics of solid state physics.

b) Skills. The student is able to clearly interpret and describe nuclear and atomic phenomena. Understands the essence and specificity of atomic and nuclear physics and the basics of solid state physics. Based on the acquired knowledge, he or she knows how to apply a mathematical apparatus to solve accounting problems.

c) Social competences. The student knows what the processes taking place in atoms, atomic nuclei and a solid are based on.

Assessment methods and assessment criteria:

- Written test in the middle of the semester

- Final written / oral examination

- As part of the exercises in the subject of Physics IV, the student is required to perform 10 projects - tasks included in the worksheets.

The following evaluation criteria are adopted for all effects in all forms of verification:

rating 5: fully achieved (no noticeable shortcomings),

rating 4.5: almost fully achieved and the criteria for awarding a higher rating are not met,

grade 4: achieved to a significant extent and the criteria for awarding a higher grade are not met,

grade 3.5: achieved to a significant extent - with a clear predominance of positives - and the criteria for awarding a higher grade are not met,

rating 3: achieved for most cases covered by the verification and the criteria for awarding a higher rating are not met,

grade 2: not achieved for most cases under review.

Practical placement:

There are no apprenticeships

Classes in period "Summer semester 2021/22" (past)

Time span: 2022-02-01 - 2022-06-30
Selected timetable range:
Navigate to timetable
Type of class:
Classes, 30 hours more information
Lectures, 30 hours more information
Coordinators: Paweł Pęczkowski
Group instructors: Paweł Pęczkowski
Students list: (inaccessible to you)
Examination: examination
(in Polish) E-Learning:

(in Polish) E-Learning (pełny kurs) z podziałem na grupy

(in Polish) Opis nakładu pracy studenta w ECTS:

Lectures - 2 points ECTS

Exercises - 2 points ECTS

Type of subject:

obligatory

(in Polish) Grupa przedmiotów ogólnouczenianych:

(in Polish) nie dotyczy

Short description:

The fourth part of General Physics on the atomic structure of matter

Full description:

Course program (30 hours of lectures and 30 hours of tutorials):

1. The corpuscular-wave nature of electromagnetic radiation. Photoelectric phenomenon. Photochemical phenomenon. Compton phenomenon. Lebedev's experience.

2. The de Broglie hypothesis. Phase and group velocity of de Broglie waves. Schrödingera-Kleina-Gordona wave equation.

3. Experimental confirmation of the de Broglie hypothesis. Examples of experiments confirming the wave-particle nature of elementary particles, atoms and molecules.

4. Electron in a finite potential well. Two- and three-dimensional electron traps. Electron wave function. Other electron traps: nanocrystals, quantum dots, quantum pens. Electron detection probability density.

5. Step potential for electron energy higher / lower than threshold height. Potential in the form of a barrier.

6. Models of atoms: Thomson, Rutherford, Bohr (Bohr's postulates), contemporary Bohr-Sommerfeld. The hydrogen atom: energy levels, series in the emission spectrum, quantum numbers.

7. Basic properties of atoms. Franck-Hertz experiment - confirmation of discrete stationary states postulated in the Bohr model. Einstein-de Hass experiment and Barnett's experiment - coupling angular momentum and magnetic moment of individual atoms. Stern-Gerlach experiment - electron spin.

8. Atoms in a magnetic field - Zeeman effect: anomalous, normal. Paschen-Back effect. Atom in an electric field - Stark effect.

9. Construction of the periodic table. X-rays and element numbering - the Mosley experiment. Paulie's prohibition. Hund's rules.

10. Band theory of solids. Electrical properties of solids: insulators, semiconductors (donor and acceptor levels), metals, superconductors. Semiconductor diode. Transistor.

11. Lasers and laser light. Spontaneous and forced emission, inversion of fillings. Helium-neon laser.

12. Raman scattering - a method of detecting the oscillatory-rotational structure of molecules.

13. Properties of atomic nuclei. The path of nuclide stability, radioactive decay. Radioactive series. The law of radioactive decay. The fission and synthesis of atomic nuclei.

14. Drop model of the atomic nucleus. Bethe-Weizsäcker formula, conclusions resulting from it. The shell model of the atomic nucleus. Magic numbers.

15. Elementary particles and their classification. Quark model of elementary particles. Multiplets with specific spin and parity. Quarks, gluons, color concept.

Description prepared by: Paweł Pęczkowski

Bibliography:

[1] Robert Eisberg, Robert Resnick, Fizyka kwantowa, atomów, cząsteczek, ciała stałego, jąder i cząstek elementarnych, PWN, Warszawa, 1983.

[2] Jerzy Ginter." Fizyka fal. Fale w ośrodkach jednowymiarowych. Fale w ośrodkach niejednorodnych", t.1, PWN, Warszawa, 1993.

[3] Jerzy Ginter." Fizyka fal. Promieniowanie i dyfrakcja. Stany związane", t.2, PWN, Warszawa, 1993.

[4] Hermann Haken, Hans C. Wolf, "Fizyka molekularna z elementami chemii kwantowej", PWN, Warszawa, 1998.

[5] Hermann Haken, Hans C. Wolf, Atomy i kwanty. Wprowadzenie do współczesnej spektroskopii atomowej, PWN, Warszawa, 2002.

[6] David Halliday, Robert Resnick, Jearl Walker, "Podstawy fizyki", t.5, PWN, Warszawa, 2007.

[7] Paweł Pęczkowski, "Tajemnicza mechanika kwantowa. Doświadczenia ukazujące korpuskularno-falową naturę materii", t.1, Oficyna Wydawnicza ŁOŚGraf, Warszawa, 2011.

[8] Paweł Pęczkowski, "Tajemnicza mechanika kwantowa. Doświadczenia ukazujące kwantowe własności atomów i cząstek elementarnych", t.2, ICMB, Warszawa, 2015.

[9] Zofia Leś, Podstawy fizyki atomu, PWN, Warszawa, 2021.

Supplementary literature (original papers):

- L. de Broglie, "Wave and quanta", Nature (London) 112, 540, 1923.

- C.J. Davisson, L.H. Germer, "The scattering of electrons by a single crystal of nickel", Nature (London) 119, 558, 1927.

- C. Jönsson, "Electron diffraction at multiple slits", Am. J. Phys. 41(1), 4, 1974.

- A. Zeilinger, et al., "Single and double-slit diffraction of neutrons", Rev. Mode. Phys. 60, 4, 1988.

- O. Cornal, J. Mlynek, "Young's double-slit experiment with atoms: a simple atom interferometer", Phys. Rev. Lett. 66, 2689, 1991.

- O. Nairz, M. Arndt, A. Zellinger, "Quantum interference experiments with large molecules", Am. J. Phys. 71(4), 319, 2003.

- L. Hackermüller, K. Hornberger, et al., "The wave nature of biomolecules and fluorofullerenes", Phys. Rev. Lett. 91, 090408, 2003.

- N. Bohr, "On the constitution of atoms and molecules", Phil. Mag. 26, 1, 1913.

- J. Franck, G. Hertz, "Über Zusammenstösse zwischen Elektronen und den Molekülen des Quecksilberdampfes und die Ionisierungsspannung desselbe"n, Verh. DPG 16, 457, 1914.

- W. Gerlach, O. Stern, "Der experimentelle Nachweis des magnetischen Moments des Silberatoms", Z. Phys. 8, 110, 1922.

- W. Gerlach, O. Stern, "Der experimentelle Nachweis der Richtungsquantlung in Magnetfield", Z. Phys. 9, 349, 1922.

- A. Einstein, W.J. de Haas, "Experimenteller Nachweis der Ampèreschen Molekulaströme", Deut. Phys. Gesell. 17, 152, 1915.

- D.J. Barnett, "The magnetization of iron, nickel, and cobalt by rotation and the nature of the magnetic molecule", Phys. Rev. 10, 7, 1917.

- P. Zeeman, "On the influence of magnetism on the nature of the light emitted by substance", Phil. Mag. 43, 226, 1897.

Classes in period "Summer semester 2022/23" (past)

Time span: 2023-02-01 - 2023-06-30
Selected timetable range:
Navigate to timetable
Type of class:
Classes, 30 hours more information
Lectures, 30 hours more information
Coordinators: Paweł Pęczkowski
Group instructors: Paweł Pęczkowski
Students list: (inaccessible to you)
Examination: examination
(in Polish) E-Learning:

(in Polish) E-Learning (pełny kurs) z podziałem na grupy

(in Polish) Opis nakładu pracy studenta w ECTS:

Lectures - 2 points ECTS

Exercises - 2 points ECTS


Type of subject:

obligatory

(in Polish) Grupa przedmiotów ogólnouczenianych:

(in Polish) nie dotyczy

Short description:

The fourth part of General Physics on the atomic structure of matter

Full description:

Course program (30 hours of lectures and 30 hours of tutorials):

1. The corpuscular-wave nature of electromagnetic radiation. Photoelectric phenomenon. Photochemical phenomenon. Compton phenomenon. Lebedev's experience.

2. The de Broglie hypothesis. Phase and group velocity of de Broglie waves. Schrödingera-Kleina-Gordona wave equation.

3. Experimental confirmation of the de Broglie hypothesis. Examples of experiments confirming the wave-particle nature of elementary particles, atoms and molecules.

4. Electron in a finite potential well. Two- and three-dimensional electron traps. Electron wave function. Other electron traps: nanocrystals, quantum dots, quantum pens. Electron detection probability density.

5. Step potential for electron energy higher / lower than threshold height. Potential in the form of a barrier.

6. Models of atoms: Thomson, Rutherford, Bohr (Bohr's postulates), contemporary Bohr-Sommerfeld. The hydrogen atom: energy levels, series in the emission spectrum, quantum numbers.

7. Basic properties of atoms. Franck-Hertz experiment - confirmation of discrete stationary states postulated in the Bohr model. Einstein-de Hass experiment and Barnett's experiment - coupling angular momentum and magnetic moment of individual atoms. Stern-Gerlach experiment - electron spin.

8. Atoms in a magnetic field - Zeeman effect: anomalous, normal. Paschen-Back effect. Atom in an electric field - Stark effect.

9. Construction of the periodic table. X-rays and element numbering - the Mosley experiment. Paulie's prohibition. Hund's rules.

10. Band theory of solids. Electrical properties of solids: insulators, semiconductors (donor and acceptor levels), metals, superconductors. Semiconductor diode. Transistor.

11. Lasers and laser light. Spontaneous and forced emission, inversion of fillings. Helium-neon laser.

12. Raman scattering - a method of detecting the oscillatory-rotational structure of molecules.

13. Properties of atomic nuclei. The path of nuclide stability, radioactive decay. Radioactive series. The law of radioactive decay. The fission and synthesis of atomic nuclei.

14. Drop model of the atomic nucleus. Bethe-Weizsäcker formula, conclusions resulting from it. The shell model of the atomic nucleus. Magic numbers.

15. Elementary particles and their classification. Quark model of elementary particles. Multiplets with specific spin and parity. Quarks, gluons, color concept.

Description prepared by: Paweł Pęczkowski

Bibliography:

[1] Robert Eisberg, Robert Resnick, Fizyka kwantowa, atomów, cząsteczek, ciała stałego, jąder i cząstek elementarnych, PWN, Warszawa, 1983.

[2] Jerzy Ginter." Fizyka fal. Fale w ośrodkach jednowymiarowych. Fale w ośrodkach niejednorodnych", t.1, PWN, Warszawa, 1993.

[3] Jerzy Ginter." Fizyka fal. Promieniowanie i dyfrakcja. Stany związane", t.2, PWN, Warszawa, 1993.

[4] Hermann Haken, Hans C. Wolf, "Fizyka molekularna z elementami chemii kwantowej", PWN, Warszawa, 1998.

[5] Hermann Haken, Hans C. Wolf, Atomy i kwanty. Wprowadzenie do współczesnej spektroskopii atomowej, PWN, Warszawa, 2002.

[6] David Halliday, Robert Resnick, Jearl Walker, "Podstawy fizyki", t.5, PWN, Warszawa, 2007.

[7] Paweł Pęczkowski, "Tajemnicza mechanika kwantowa. Doświadczenia ukazujące korpuskularno-falową naturę materii", t.1, Oficyna Wydawnicza ŁOŚGraf, Warszawa, 2011.

[8] Paweł Pęczkowski, "Tajemnicza mechanika kwantowa. Doświadczenia ukazujące kwantowe własności atomów i cząstek elementarnych", t.2, ICMB, Warszawa, 2015.

[9] Zofia Leś, Podstawy fizyki atomu, PWN, Warszawa, 2021.

Supplementary literature (original papers):

- L. de Broglie, "Wave and quanta", Nature (London) 112, 540, 1923.

- C.J. Davisson, L.H. Germer, "The scattering of electrons by a single crystal of nickel", Nature (London) 119, 558, 1927.

- C. Jönsson, "Electron diffraction at multiple slits", Am. J. Phys. 41(1), 4, 1974.

- A. Zeilinger, et al., "Single and double-slit diffraction of neutrons", Rev. Mode. Phys. 60, 4, 1988.

- O. Cornal, J. Mlynek, "Young's double-slit experiment with atoms: a simple atom interferometer", Phys. Rev. Lett. 66, 2689, 1991.

- O. Nairz, M. Arndt, A. Zellinger, "Quantum interference experiments with large molecules", Am. J. Phys. 71(4), 319, 2003.

- L. Hackermüller, K. Hornberger, et al., "The wave nature of biomolecules and fluorofullerenes", Phys. Rev. Lett. 91, 090408, 2003.

- N. Bohr, "On the constitution of atoms and molecules", Phil. Mag. 26, 1, 1913.

- J. Franck, G. Hertz, "Über Zusammenstösse zwischen Elektronen und den Molekülen des Quecksilberdampfes und die Ionisierungsspannung desselbe"n, Verh. DPG 16, 457, 1914.

- W. Gerlach, O. Stern, "Der experimentelle Nachweis des magnetischen Moments des Silberatoms", Z. Phys. 8, 110, 1922.

- W. Gerlach, O. Stern, "Der experimentelle Nachweis der Richtungsquantlung in Magnetfield", Z. Phys. 9, 349, 1922.

- A. Einstein, W.J. de Haas, "Experimenteller Nachweis der Ampèreschen Molekulaströme", Deut. Phys. Gesell. 17, 152, 1915.

- D.J. Barnett, "The magnetization of iron, nickel, and cobalt by rotation and the nature of the magnetic molecule", Phys. Rev. 10, 7, 1917.

- P. Zeeman, "On the influence of magnetism on the nature of the light emitted by substance", Phil. Mag. 43, 226, 1897.

Classes in period "Summer semester 2023/24" (in progress)

Time span: 2024-02-15 - 2024-06-30
Selected timetable range:
Navigate to timetable
Type of class:
Classes, 30 hours more information
Lectures, 30 hours more information
Coordinators: Paweł Pęczkowski
Group instructors: Paweł Pęczkowski
Students list: (inaccessible to you)
Examination: examination
(in Polish) E-Learning:

(in Polish) E-Learning

(in Polish) Opis nakładu pracy studenta w ECTS:

Lectures - 2 points ECTS

Exercises - 2 points ECTS


ECTS description:


For the lecture:

participation in classes: 30h

preparation for classes: 10h

preparation for verification: 15 hours

consultations with the lecturer: 5h

Total 60 hours, 2 ECTS


For exercise:

participation in classes: 30h

preparation for classes: 10h

preparation for verification: 15 hours

consultations with the lecturer: 5h

Total 60 hours, 2 ECTS

Type of subject:

obligatory

(in Polish) Grupa przedmiotów ogólnouczenianych:

(in Polish) nie dotyczy

Short description:

The fourth part of General Physics on the atomic structure of matter

Full description:

Course program (30 hours of lectures and 30 hours of tutorials):

1. The corpuscular-wave nature of electromagnetic radiation. Photoelectric phenomenon. Photochemical phenomenon. Compton phenomenon. Lebedev's experience.

2. The de Broglie hypothesis. Phase and group velocity of de Broglie waves. Schrödingera-Kleina-Gordona wave equation.

3. Experimental confirmation of the de Broglie hypothesis. Examples of experiments confirming the wave-particle nature of elementary particles, atoms and molecules.

4. Electron in a finite potential well. Two- and three-dimensional electron traps. Electron wave function. Other electron traps: nanocrystals, quantum dots, quantum pens. Electron detection probability density.

5. Step potential for electron energy higher / lower than threshold height. Potential in the form of a barrier.

6. Models of atoms: Thomson, Rutherford, Bohr (Bohr's postulates), contemporary Bohr-Sommerfeld. The hydrogen atom: energy levels, series in the emission spectrum, quantum numbers.

7. Basic properties of atoms. Franck-Hertz experiment - confirmation of discrete stationary states postulated in the Bohr model. Einstein-de Hass experiment and Barnett's experiment - coupling angular momentum and magnetic moment of individual atoms. Stern-Gerlach experiment - electron spin.

8. Atoms in a magnetic field - Zeeman effect: anomalous, normal. Paschen-Back effect. Atom in an electric field - Stark effect.

9. Construction of the periodic table. X-rays and element numbering - the Mosley experiment. Paulie's prohibition. Hund's rules.

10. Band theory of solids. Electrical properties of solids: insulators, semiconductors (donor and acceptor levels), metals, superconductors. Semiconductor diode. Transistor.

11. Lasers and laser light. Spontaneous and forced emission, inversion of fillings. Helium-neon laser.

12. Raman scattering - a method of detecting the oscillatory-rotational structure of molecules.

13. Properties of atomic nuclei. The path of nuclide stability, radioactive decay. Radioactive series. The law of radioactive decay. The fission and synthesis of atomic nuclei.

14. Drop model of the atomic nucleus. Bethe-Weizsäcker formula, conclusions resulting from it. The shell model of the atomic nucleus. Magic numbers.

15. Elementary particles and their classification. Quark model of elementary particles. Multiplets with specific spin and parity. Quarks, gluons, color concept.

Description prepared by: Paweł Pęczkowski

Bibliography:

[1] Robert Eisberg, Robert Resnick, Fizyka kwantowa, atomów, cząsteczek, ciała stałego, jąder i cząstek elementarnych, PWN, Warszawa, 1983.

[2] Jerzy Ginter." Fizyka fal. Fale w ośrodkach jednowymiarowych. Fale w ośrodkach niejednorodnych", t.1, PWN, Warszawa, 1993.

[3] Jerzy Ginter." Fizyka fal. Promieniowanie i dyfrakcja. Stany związane", t.2, PWN, Warszawa, 1993.

[4] Hermann Haken, Hans C. Wolf, "Fizyka molekularna z elementami chemii kwantowej", PWN, Warszawa, 1998.

[5] Hermann Haken, Hans C. Wolf, Atomy i kwanty. Wprowadzenie do współczesnej spektroskopii atomowej, PWN, Warszawa, 2002.

[6] David Halliday, Robert Resnick, Jearl Walker, "Podstawy fizyki", t.5, PWN, Warszawa, 2007.

[7] Paweł Pęczkowski, "Tajemnicza mechanika kwantowa. Doświadczenia ukazujące korpuskularno-falową naturę materii", t.1, Oficyna Wydawnicza ŁOŚGraf, Warszawa, 2011.

[8] Paweł Pęczkowski, "Tajemnicza mechanika kwantowa. Doświadczenia ukazujące kwantowe własności atomów i cząstek elementarnych", t.2, ICMB, Warszawa, 2015.

[9] Zofia Leś, Podstawy fizyki atomu, PWN, Warszawa, 2021.

Supplementary literature (original papers):

- L. de Broglie, "Wave and quanta", Nature (London) 112, 540, 1923.

- C.J. Davisson, L.H. Germer, "The scattering of electrons by a single crystal of nickel", Nature (London) 119, 558, 1927.

- C. Jönsson, "Electron diffraction at multiple slits", Am. J. Phys. 41(1), 4, 1974.

- A. Zeilinger, et al., "Single and double-slit diffraction of neutrons", Rev. Mode. Phys. 60, 4, 1988.

- O. Cornal, J. Mlynek, "Young's double-slit experiment with atoms: a simple atom interferometer", Phys. Rev. Lett. 66, 2689, 1991.

- O. Nairz, M. Arndt, A. Zellinger, "Quantum interference experiments with large molecules", Am. J. Phys. 71(4), 319, 2003.

- L. Hackermüller, K. Hornberger, et al., "The wave nature of biomolecules and fluorofullerenes", Phys. Rev. Lett. 91, 090408, 2003.

- N. Bohr, "On the constitution of atoms and molecules", Phil. Mag. 26, 1, 1913.

- J. Franck, G. Hertz, "Über Zusammenstösse zwischen Elektronen und den Molekülen des Quecksilberdampfes und die Ionisierungsspannung desselbe"n, Verh. DPG 16, 457, 1914.

- W. Gerlach, O. Stern, "Der experimentelle Nachweis des magnetischen Moments des Silberatoms", Z. Phys. 8, 110, 1922.

- W. Gerlach, O. Stern, "Der experimentelle Nachweis der Richtungsquantlung in Magnetfield", Z. Phys. 9, 349, 1922.

- A. Einstein, W.J. de Haas, "Experimenteller Nachweis der Ampèreschen Molekulaströme", Deut. Phys. Gesell. 17, 152, 1915.

- D.J. Barnett, "The magnetization of iron, nickel, and cobalt by rotation and the nature of the magnetic molecule", Phys. Rev. 10, 7, 1917.

- P. Zeeman, "On the influence of magnetism on the nature of the light emitted by substance", Phil. Mag. 43, 226, 1897.

Course descriptions are protected by copyright.
Copyright by Cardinal Stefan Wyszynski University in Warsaw.
ul. Dewajtis 5,
01-815 Warszawa
tel: +48 22 561 88 00 https://uksw.edu.pl
contact accessibility statement mapa serwisu USOSweb 7.0.4.0-1 (2024-05-13)