Cardinal Stefan Wyszynski University in Warsaw - Central Authentication System
Strona główna

General physics IV

General data

Course ID: WM-FI-261
Erasmus code / ISCED: (unknown) / (0539) Physical sciences, not elsewhere classified The ISCED (International Standard Classification of Education) code has been designed by UNESCO.
Course title: General physics IV
Name in Polish: Fizyka ogólna IV
Organizational unit: Faculty of Mathematics and Natural Sciences. School of Exact Sciences.
Course groups:
Course homepage: https://teams.microsoft.com/l/team/19%3aLnMjfCQ2zbLKxK-3xSh6o90ampisHwwW5u8m5-r9N3s1%40thread.tacv2/conversations?groupId=f08c330e-3660-4755-8205-0ead80894adf&tenantId=12578430-c51b-4816-8163-c7281035b9b3
ECTS credit allocation (and other scores): 4.00 OR 8.00 (differs over time) Basic information on ECTS credits allocation principles:
  • the annual hourly workload of the student’s work required to achieve the expected learning outcomes for a given stage is 1500-1800h, corresponding to 60 ECTS;
  • the student’s weekly hourly workload is 45 h;
  • 1 ECTS point corresponds to 25-30 hours of student work needed to achieve the assumed learning outcomes;
  • weekly student workload necessary to achieve the assumed learning outcomes allows to obtain 1.5 ECTS;
  • work required to pass the course, which has been assigned 3 ECTS, constitutes 10% of the semester student load.

view allocation of credits
Language: Polish
Subject level:

elementary

Learning outcome code/codes:

FIZ_W02, FIZ_W03, FIZ_W04, FIZ_W05, FIZ_W06, FIZ_W07

Preliminary Requirements:

General physics I, II, III

Short description:

The fourth part of General Physics on the atomic structure of matter

Full description:

Course program (30 hours of lectures and 30 hours of tutorials):

1. The corpuscular-wave nature of electromagnetic radiation. Photoelectric phenomenon. Photochemical phenomenon. Compton phenomenon. Lebedev's experience.

2. The de Broglie hypothesis. Phase and group velocity of de Broglie waves. Wave equation for de Broglie waves.

3. Experimental confirmation of the de Broglie hypothesis. Examples of experiments confirming the wave-particle nature of elementary particles, atoms and molecules.

4. Electron in a finite potential well. Two- and three-dimensional electron traps. Electron wave function. Electron detection probability density.

5. Step potential for electron energy higher / lower than threshold height. Potential in the form of a barrier.

6. Models of atoms: Thomson, Rutherford, Bohr (Bohr's postulates), contemporary Bohr-Sommerfeld. The hydrogen atom: energy levels, series in the emission spectrum, quantum numbers.

7. Basic properties of atoms. Franck-Hertz experiment - confirmation of discrete stationary states postulated in the Bohr model. Einstein-de Hass experiment and Barnett's experiment - coupling angular momentum and magnetic moment of individual atoms. Stern-Gerlach experiment - electron spin.

8. Atoms in a magnetic field - Zeeman effect: anomalous, normal. Paschen-Back effect. Atom in an electric field - Stark effect.

9. Construction of the periodic table. X-rays and element numbering - the Mosley experiment. Paulie's prohibition. Hund's rules.

10. Band theory of solids. Electrical properties of solids: insulators, semiconductors (donor and acceptor levels), metals, superconductors. Semiconductor diode. Transistor.

11. Lasers and laser light. Spontaneous and forced emission, inversion of fillings. Helium-neon laser.

12. Properties of atomic nuclei. The path of nuclide stability, radioactive decay. Radioactive series. The law of radioactive decay. The fission and synthesis of atomic nuclei.

13. Drop model of the atomic nucleus. Bethe-Weizsäcker formula, conclusions resulting from it. The shell model of the atomic nucleus. Magic numbers.

14. Elementary particles and their classification. Quark model of elementary particles. Multiplets with specific spin and parity. Quarks, gluons, color concept.

Description prepared by: Paweł Pęczkowski

Bibliography:

[1] Robert Eisberg, Robert Resnick, Fizyka kwantowa, atomów, cząsteczek, ciała stałego, jąder i cząstek elementarnych, PWN, Warszawa, 1983.

[2] Jerzy Ginter." Fizyka fal. Fale w ośrodkach jednowymiarowych. Fale w ośrodkach niejednorodnych", t.1, PWN, Warszawa, 1993.

[3] Jerzy Ginter." Fizyka fal. Promieniowanie i dyfrakcja. Stany związane", t.2, PWN, Warszawa, 1993.

[4] Hermann Haken, Hans C. Wolf, "Fizyka molekularna z elementami chemii kwantowej", PWN, Warszawa, 1998.

[5] Hermann Haken, Hans C. Wolf, Atomy i kwanty. Wprowadzenie do współczesnej spektroskopii atomowej, PWN, Warszawa, 2002.

[6] David Halliday, Robert Resnick, Jearl Walker, "Podstawy fizyki", t.5, PWN, Warszawa, 2007.

[7] Paweł Pęczkowski, "Tajemnicza mechanika kwantowa. Doświadczenia ukazujące korpuskularno-falową naturę materii", t.1, Oficyna Wydawnicza ŁOŚGraf, Warszawa, 2011.

[8] Paweł Pęczkowski, "Tajemnicza mechanika kwantowa. Doświadczenia ukazujące kwantowe własności atomów i cząstek elementarnych", t.2, ICMB, Warszawa, 2015.

[9] Zofia Leś, Podstawy fizyki atomu, PWN, Warszawa, 2021.

Literatura uzupełniająca (prace oryginalne):

- L. de Broglie, "Wave and quanta", Nature (London) 112, 540, 1923.

- C.J. Davisson, L.H. Germer, "The scattering of electrons by a single crystal of nickel", Nature (London) 119, 558, 1927.

- C. Jönsson, "Electron diffraction at multiple slits", Am. J. Phys. 41(1), 4, 1974.

- A. Zeilinger, et al., "Single and double-slit diffraction of neutrons", Rev. Mode. Phys. 60, 4, 1988.

- O. Cornal, J. Mlynek, "Young's double-slit experiment with atoms: a simple atom interferometer", Phys. Rev. Lett. 66, 2689, 1991.

- O. Nairz, M. Arndt, A. Zellinger, "Quantum interference experiments with large molecules", Am. J. Phys. 71(4), 319, 2003.

- L. Hackermüller, K. Hornberger, et al., "The wave nature of biomolecules and fluorofullerenes", Phys. Rev. Lett. 91, 090408, 2003.

- N. Bohr, "On the constitution of atoms and molecules", Phil. Mag. 26, 1, 1913.

- J. Franck, G. Hertz, "Über Zusammenstösse zwischen Elektronen und den Molekülen des Quecksilberdampfes und die Ionisierungsspannung desselbe"n, Verh. DPG 16, 457, 1914.

- W. Gerlach, O. Stern, "Der experimentelle Nachweis des magnetischen Moments des Silberatoms", Z. Phys. 8, 110, 1922.

- W. Gerlach, O. Stern, "Der experimentelle Nachweis der Richtungsquantlung in Magnetfield", Z. Phys. 9, 349, 1922.

- A. Einstein, W.J. de Haas, "Experimenteller Nachweis der Ampèreschen Molekulaströme", Deut. Phys. Gesell. 17, 152, 1915.

- D.J. Barnett, "The magnetization of iron, nickel, and cobalt by rotation and the nature of the magnetic molecule", Phys. Rev. 10, 7, 1917.

- P. Zeeman, "On the influence of magnetism on the nature of the light emitted by substance", Phil. Mag. 43, 226, 1897.

Efekty kształcenia i opis ECTS:

a) Knows the basic concepts of atomic and nuclear physics and the elements of solid state physics.

b) Understands the essence and specificity of atomic and nuclear physics and the basics of solid state physics.

c) Knows what the processes taking place in atoms, atomic nuclei and a solid are based on.

Assessment methods and assessment criteria:

- Written test in the middle of the semester

- Final written and oral examination

- As part of the exercises in the subject of Physics IV, the student is required to perform 10 projects - tasks included in the worksheets.

Practical placement:

There are no apprenticeships

Classes in period "Summer semester 2019/20" (past)

Time span: 2020-02-01 - 2020-09-20
Choosen plan division:


magnify
see course schedule
Type of class:
Classes, 60 hours more information
Lectures, 30 hours more information
Coordinators: Marek Muzyk
Group instructors: Marek Muzyk
Students list: (inaccessible to you)
Examination: examination
(in Polish) E-Learning:

(in Polish) E-Learning (pełny kurs)

Type of subject:

obligatory

(in Polish) Grupa przedmiotów ogólnouczenianych:

(in Polish) nie dotyczy

Classes in period "Summer semester 2020/21" (past)

Time span: 2021-02-01 - 2021-06-30
Choosen plan division:


magnify
see course schedule
Type of class:
Classes, 60 hours more information
Lectures, 30 hours more information
Coordinators: Marek Muzyk
Group instructors: Marek Muzyk
Students list: (inaccessible to you)
Examination: examination
(in Polish) E-Learning:

(in Polish) E-Learning (pełny kurs) z podziałem na grupy

Type of subject:

obligatory

(in Polish) Grupa przedmiotów ogólnouczenianych:

(in Polish) nie dotyczy

Classes in period "Summer semester 2021/22" (past)

Time span: 2022-02-01 - 2022-06-30
Choosen plan division:


magnify
see course schedule
Type of class:
Classes, 60 hours more information
Lectures, 30 hours more information
Coordinators: Paweł Pęczkowski
Group instructors: Paweł Pęczkowski
Students list: (inaccessible to you)
Examination: examination
(in Polish) E-Learning:

(in Polish) E-Learning (pełny kurs) z podziałem na grupy

Type of subject:

obligatory

(in Polish) Grupa przedmiotów ogólnouczenianych:

(in Polish) nie dotyczy

Classes in period "Summer semester 2022/23" (future)

Time span: 2023-02-01 - 2023-06-30
Choosen plan division:


magnify
see course schedule
Type of class:
Classes, 30 hours more information
Lectures, 30 hours more information
Coordinators: Paweł Pęczkowski
Group instructors: Paweł Pęczkowski
Students list: (inaccessible to you)
Examination: examination
(in Polish) E-Learning:

(in Polish) E-Learning (pełny kurs) z podziałem na grupy

Type of subject:

obligatory

(in Polish) Grupa przedmiotów ogólnouczenianych:

(in Polish) nie dotyczy

Course descriptions are protected by copyright.
Copyright by Cardinal Stefan Wyszynski University in Warsaw.
ul. Dewajtis 5,
01-815 Warszawa
tel: +48 22 561 88 00 https://uksw.edu.pl
contact accessibility statement USOSweb 6.8.0.0-5 (2022-09-30)