Theoretical physics I
General data
Course ID:  WMFI401 
Erasmus code / ISCED:  (unknown) / (unknown) 
Course title:  Theoretical physics I 
Name in Polish:  Fizyka teoretyczna I 
Organizational unit:  Faculty of Mathematics and Natural Sciences. School of Exact Sciences. 
Course groups:  
ECTS credit allocation (and other scores): 
0 OR
6.00
OR
5.00
(depends on study program)

Language:  Polish 
Subject level:  elementary 
Learning outcome code/codes:  K_W01‒23 K_U01‒32 K_K01‒11 
Short description: 
Theoretical mechanics I (classical) is part of theoretical physics concerned with the motions of the bodies under the influence of forces. It is the conceptual basis of all physics. The course includes Lagrange mechanics of particles and rigid bodies, elements of relativistic mechanics. 
Full description: 
1. Basic concepts of the mechanics of a material point. Constraints. D'Alembert's principle. Lagrange's equations of the first kind. 2. Generalized coordinates. Lagrangian, the principle of stationary action. EulerLagrange equations. Generalized momenta, generalized forces. Generalized potential. 3. Symmetries of the Lagrangian. Conservation laws. Noether's theorem. Cyclic coordinates. 4. Twobody system. Reduced mass. Motion in the field of a central force. 6. Kepler's laws. Equations of conical curves. Closed and open orbits. 7. Small oscillations. Normal modes. Forced and damped oscillations. 8. Coordinate transformations. Motion in a noninetrial frame. Motion on the rotating Earth. The Coriolis' force 9. Motion of a rigid body. Moment of inertia tensor. Principal moments, moments of deviation. 10. Euler's angles. Motion of a symmetrical top. Physical pendulum. 11. Collisions. Crosssections. 12. Spacetime. Spacetime interval. Lorentz transformations. Time dilation. Length contraction. Relativistic addition of velocities. 13. Lagrangian, energy and momentum of a relativistic particle. Charged relativistic particle in the electromagnetic field. 14. Phase space. Poisson's brackets. Hamilton's equations. 15.Canonical transformations. Liouville's theorem. The HamiltonJacobi's equation. 
Bibliography: 
1. L. D. Landau i E. M. Lifszic, Krótki kurs fizyki teoretycznej. T.1. Wyd. III (PWN, Warszawa, 1980). 2. M. Kozielski i M. Kozielska, Wybrane zagadnienia z fizyki (Wyd. Politechniki Poznańskiej, Poznań, 1996). 3. L. D. Landau i E. M. Lifszic, Mechanika (PWN, Warszawa, 1961). 4. W. Rubinowicz i W. Królikowski, Mechanika teoretyczna (PWN, Warszawa, 1955). 5. W. S. Urbański, Mechanika teoretyczna. Wyd.II (PWN, Warszawa, 1970). 6. C. Kittel, W. D. Knight, i M. A. Ruderman, Mechanika (PWN, Warszawa,1969). 
Efekty kształcenia i opis ECTS: 
Explains the problems of classical mechanics and the relation to experimental physics. Knows the theoretical and mathematical description of the laws of classical mechanics. Formulates the problems of classical mechanics in a mathematical language. Solves the problems of classical mechanics. ECTS description: Participation in the lecture: 30h Preparation for classes: 42h Preparation for verification: 8h Consultations with the lecturer: 2h 
Assessment methods and assessment criteria: 
Written and oral exam. The solving of specific problems and knowledge of the theoretical side of the discussed issues is required. 
Classes in period "Winter semester 2020/21" (past)
Time span:  20201001  20210131 
see course schedule 
Type of class: 
Classes, 30 hours
Lectures, 30 hours


Coordinators:  Tomasz Radożycki  
Group instructors:  Tomasz Radożycki  
Students list:  (inaccessible to you)  
Examination:  examination  
(in Polish) ELearning:  (in Polish) ELearning (pełny kurs) z podziałem na grupy 

Type of subject:  obligatory 

(in Polish) Grupa przedmiotów ogólnouczenianych:  (in Polish) nie dotyczy 

Wymagania wstępne: 
General physics I, mathemtical analysis, algebra 
Copyright by Cardinal Stefan Wyszynski University in Warsaw.