Theoretical physics II
General data
Course ID:  WMFI451 
Erasmus code / ISCED:  (unknown) / (unknown) 
Course title:  Theoretical physics II 
Name in Polish:  Fizyka teoretyczna II 
Organizational unit:  Faculty of Mathematics and Natural Sciences. School of Exact Sciences. 
Course groups:  
ECTS credit allocation (and other scores): 
0 OR
6.00
OR
5.00
(depends on study program)

Language:  Polish 
Subject level:  elementary 
Learning outcome code/codes:  FIZ2_W01; FIZ2_W02; FIZ2_W03; FIZ2_W07; FIZ2_W08; FIZ2_U01; FIZ2_U04; FIZ2_U09; FIZ2_U15; FIZ2_U16; FIZ2_K02 
Short description: 
Electrostatics, magnetostatics, fields in matter, Maxwell's equations, electromagnetic waves, radiation, electromagnetism in a special theory of relativity. 
Full description: 
1. Mathematical introduction, vectors, scalar and vector products, vector fields, gradient, divergence, curl, curves, surface and volume integrals, unoriented and oriented integrals, surface parameterization, Stokes' and Gauss' theorems, Dirac delta function in one and many dimensions. 2. Maxwel'sl equations in integral and differential form: Gauss' law for electricity and magnetism, Amper's law, Faraday's law of induction, the principle of charge conservation. 3. Electrostatics, superposition principle, electrostatic potential, Poisson's equation. 4. Multipolar expansion, charges in the electrostatic field, energy of an electrostatic system , multipolar interactions, electrostatic field energy. 5. Solving electrostatic problems, Laplace's equation in one, two and three dimensions, boundary conditions, method of images. 6. Electrostatic field in dielectrics, polarization, Gauss' law, forces acting on dielectrics. 7. Magnetostatics, Lorentz' force, BiotSavart's law, vector potential, magnetic field energy. 8. Magnetic field in matter, magnetization: dia, para and ferromagnetics, magnetic moment, magnetic field energy, magnetic dipole. 9. Nonrelativistic motion of charge in static fields, magnetic dipole in a magnetic field. 10. General description of the electromagnetic field, energy, Poynting's vector, potentials, Lorentz' and Coulomb's gauges. 11. Electromagnetic waves, reflection, refraction and polarization, Fresnel's formulas, waves in matter, absorption and dispersion, waveguides. 12. Green's functions for wave equation, retarded potentials. 12.Radiation of a charge, LienardWichert's potentials, dipole radiation. 14. Lorentz' transformations for electromagnetic fields and potentials, fourdimensional description of fields, Lagrangian for electromagnetic field, Maxwell's equation in a fourvector language. 15. Relativistic dynamics of particles in electromagnetic fields. 
Bibliography: 
D.J. Griffiths, Foundations of electrodynamics 2004 J.D. Jackson, Classical electrodynamics 1985 
Efekty kształcenia i opis ECTS: 
Knows basic concepts and mathematical formalism of electrodynamics. Understands the essence and specificity of electrodynamics. Understands connections of electrodynamics with other branches of theoretical and experimental physics. 
Assessment methods and assessment criteria: 
Written and oral exam 
Classes in period "Summer semester 2020/21" (past)
Time span:  20210201  20210630 
see course schedule 
Type of class: 
Classes, 30 hours
Lectures, 30 hours


Coordinators:  Tomasz Radożycki  
Group instructors:  Tomasz Radożycki  
Students list:  (inaccessible to you)  
Examination:  examination  
(in Polish) ELearning:  (in Polish) ELearning (pełny kurs) z podziałem na grupy 

Type of subject:  obligatory 

(in Polish) Grupa przedmiotów ogólnouczenianych:  (in Polish) nie dotyczy 
Copyright by Cardinal Stefan Wyszynski University in Warsaw.