Uniwersytet Kardynała Stefana Wyszyńskiego w Warszawie - Centralny System UwierzytelnianiaNie jesteś zalogowany | zaloguj się
katalog przedmiotów - pomoc

A dual ontology of nature, life, and person WF-FI-BASTIONTO-ER
Wykład monograficzny (WYK_MON) Semestr zimowy 2017/18

Informacje o zajęciach (wspólne dla wszystkich grup)

Liczba godzin: 30
Limit miejsc: 20

• Course Textbook:

Basti G. (2017). An ontology for our information age. A paradigm shift in science and philosophy, Aracne Edition, Rome. (available in ebook format since Fall 2017).

Abramsky, S., & Tzevelekos, N. (2011). Introduction to categories and categorical logic. In B. Coecke (Ed.), New structures for physics. Lecture Notes in Physics, vol. 813 (pp. 3-94). Berlin-New York: Springer

• Other texts (many of them will be downloadable in the online course viewer):

Abramsky, S. (2005). A Cook’s Tour of the Finitary Non-Well-Founded Sets (original lecture: 1988). In S. Artemov, H. Barringer, A. d'Avila, L. C. Lamb, & J. Woods (A cura di), Essays in honor of Dov Gabbay. Vol. I (p. 1-18). London: Imperial College Pubblications.

Aczel, P. (1988). Non-well-founded sets. CLSI Lecture Notes, vol.14.

Awodey, S. (2010). Category Theory. Second Edition (Oxford Logic Guides 52). Oxford, UK: Oxford UP.

Basti, G. (2012). Philosophy of Nature and of Science. Vol. I: The Foundations. Translated by Ph. Larrey. Retrieved May 31, 2016, from http://www.irafs.org/courses/materials/basti_fil_nat.pdf

Basti, G. (2013). A change of paradigm in cognitive neurosciences Comment on: "Dissipation of 'dark energy' by cortex in knowledge retrieval" by Capolupo, Freeman and Vitiello, Physics of life reviews, 5 (2013b), 97-98.

Basti, G. (2017). The quantum field theory (QFT) dual paradigm in fundamental physics and the semantic information content and measure in cognitive sciences, in Representation of Reality: Humans, Animals and Machine, G. Dodig-Crnkovic & R. Giovagnoli (Eds.), Springer Verlag: Berlin-New York (In Press).

Basti G., Capolupo A, Vitiello G, (2017). Quantum field theory and coalgebraic logic in theoretical computer science», Progress in Biophysics and Molecular Biology, Preprint in: <https://doi.org/10.1016/j.pbiomolbio.2017.04.006>.

Blasone, M., Jizba, P., & Vitiello, G. (2011). Quantum field theory and its macroscopic manifestations. Boson condensation, ordered patternsand topological defects. London: Imperial College Press.

Capolupo, A., Freeman, W. J., & Vitiello, G. (2013). Dissipation of dark energy by cortex in knowledge retrieval. Physics of life reviews 5(10), 90-97.

Del Giudice, E., Pulselli, R., & Tiezzi, E. (2009). Thermodynamics of irreversible processes and quantum field theory: an interplay for understanding of ecosystem dynamics. Ecological Modelling, 220, 1874-1879

Deutsch, D. (1985). Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A, 400, 97–117.

Goranko, V., & Otto, M. (2007). Model theory of modal logic. In P. Blackburn, F. J. van Benthem, & F. Wolter (A cura di), Handbook of Modal Logic (p. 252-331). Amsterdam: Elsevier

Hawking, S., & Mlodinow, L. (2010). The grand design. New answers to the ultimate questions of life. London: Bantam Press.

Krauss, L. M. (2012). A universe from nothing. Why there is something rather than nothing. Afterward by Richard Dawkins. New York: Free Press

Rovelli, C. (1996). Relational quantum mechanics. Int. J. Theor. Phys., 35, 1637–1678.

Rutten, J. J. (2000). Universal coalgebra: a theory of systems. Theoretical computer science, 249(1), 3-80.

Sangiorgi , D. (2012). Origins of bisimulation and coinduction. In D. Sangiorgi, & J. Rutten (A cura di), Advanced topics in bisimulation and coinduction (p. 1-37). Cambridge, UK: Cambridge UP.

Umezawa, H. (1993). Advanced field theory: micro, macro and thermal concepts. New York: American Institute of Physics.

Umezawa, H. (1995). H. Umezawa, Development in concepts in quantum field theory in half century. Math. Japonica, 41, 109–124.

Van Benthem, J. (1984). Correspondence theory. In D. Gabbay, & F. Guenthner (Eds.), Handbook of philosophical logic. Vol. II (pp. 167-247). Dordrecht, NL: Reidel.

Van Benthem, J. (2010). Modal Logic for Open Minds. Stanford, CA: CLSI Publications.

Vattimo, G. (1985). La fine della modernità. Milano: Garzanti.

Venema, Y. (2007). Algebras and co-algebras. In P. Blackburn, F. J. van Benthem, & F. Wolter (A cura di), Handbook of modal logic (p. 331-426). Amsterdam, North Holland: Elsevier.

Vitiello, G. (2004). The dissipative brain. In G. G. Globus, K. H. Pribram, & G. Vitiello (A cura di), Brain and Being - At the boundary between science,philosophy,language and arts (p. 317-330). Amstedam: John Benjamins Pub. Co.

Vitiello, G. (2007). Links. Relating different physical systems through the common QFT algebraic structure. Lecture Notes in Physics, 718, 165-205.

Von Neumann, J. (1955). Mathematical foundations of quantum mechanics. Princeton, NJ: Princeton UP.Basti G. (2017).

Metody i kryteria oceniania:

Preparation of a written work of at least 20 pages on some sources of the course bibliography, and previously agreed with the professor.

Zakres tematów:

1 Premise: the actual paradigm shift in fundamental (quantum physics) and in theoretical computer science

2 Some elements of the classical Von Neumann formalization of quantum mechanics (QM)

3 The commutative Hopf algebra and coalgebra (Hopf bialgebra) in the standard formalism of QM

4 Some elements of the GNS-construction, and the passage to a topological modeling of quantum field theory (QFT)

5 A topological model of near-to-equilibrium system in quantum thermodynamics within the statistical mechanics

6 The Stone Theorem and some elements of a non-commutative topological modeling of quantum computations

7 The III Principle of Thermodynamics and the notion of quantum vacuum (QV): the thermal QFT of dissipative systems

8 Some elements of Category Theory (CT), and the notion of categorical dual equivalence in mathematics and logic

8 The irreducible quantum vacuum (QV) fluctuations and the coalgebraic modeling of a thermal QFT system

10 The doubling of the Hilbert space and the categorical duality between q-deformed Hopf coalgebras/algebras

11 The Stone theorem and the coalgebraic semantics of Boolean algebras: its relevance in logic and computer science

12 The QV foliation in thermal QFT and in quantum computing: the “infinite state black-box machine” construction

13 Application to cognitive neuroscience. The “dissipative brain”: quantum entanglement and intentional consciousness

14 A taxonomy of the different formal ontologies, and the semiotic naturalism in cosmology and metaphysics

15 Conclusion: A dual ontology of the human person as a conscious communication agent, and the neuroethics

Grupy zajęciowe

zobacz na planie zajęć

Grupa Termin(y) Prowadzący Akcje
1 (codziennie od poniedziałku do piątku), 15:00 - 16:30, sala 309
(codziennie od poniedziałku do piątku), 13:15 - 14:45, sala 309
Adam Świeżyński, Andrzej Waleszczyński, Agnieszka Szymańska, Gianfranco Basti szczegóły
Wszystkie zajęcia odbywają się w budynku:
Kampus Wóycickiego Bud. 23
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Kardynała Stefana Wyszyńskiego w Warszawie.