Uniwersytet Kardynała Stefana Wyszyńskiego w Warszawie - Centralny System Uwierzytelniania
Strona główna

Soil Biodiversity, Functions and Ecosystem Services WF-OB-ILIEVSOIL-ER
Wykład (WYK) Semestr letni 2022/23

Informacje o zajęciach (wspólne dla wszystkich grup)

Liczba godzin: 15
Limit miejsc: 5
Zaliczenie: Zaliczenie na ocenę
Literatura:

Bardgett R. 2005. The Biology of Soil. Oxford University Press.

Bardgett R.D. 2015. Earth Matters: How soil underlies civilization. Oxford University Press.

Obligatory reading:

Bardgett R. 2005. The Biology of Soil. Oxford University Press.

Bardgett R.D. 2015. Earth Matters: How soil underlies civilization. Oxford University Press.

Bardgett R.D., Usher B., Hopkins D.W. 2005. Biological diversity and functions in soils. Cambridge University Press.

Bardgett R.D., Wardle D.A. 2010. Aboveground-belowground linkages. Biotic interactions, ecosystem processes, and global change. Oxford Series in Ecology and Evolution.

Coleman D.C., Crossley D.A., Hendrix Jr. P.F. 2004. Fundamentals of Soil Ecology. Elsevier Academic press.

Jeffery S. , Gardi C., Jones A., Montanarella L., Marmo L., Miko L., Ritz K., Peres G., Römbke J. and van der Putten W. H. (eds.), 2010, European Atlas of Soil Biodiversity. European Commission, Publications Office of the European Union, Luxembourg.

Lavelle P., Spain A.V. 2005. Soil Ecology. Kluwer Academic Publishers, Dordrecht.

Lavelle P.,. Decaëns T., Aubert M., Barot S., Blouin M., Bureau F., Margerie P., Mora P., Rossi J.-P. 2006. Soil invertebrates and ecosystem services European Journal of Soil Biology 42, S3–S15.

Orgiazzi, A., Bardgett, R.D., Barrios, E., Behan-Pelletier, V., Briones, M.J.I., Chotte, J-L., De Deyn, G.B., Eggleton, P., Fierer, N., Fraser, T., Hedlund, K., Jeffery, S., Johnson, N.C., Jones, A., Kandeler, E., Kaneko, N., Lavelle, P., Lemanceau, P., Miko, L., Montanarella, L., Moreira, F.M.S., Ramirez, K.S., Scheu, S., Singh, B.K., Six, J., van der Putten, W.H., Wall, D.H. (Eds.), 2016, Global Soil Biodiversity Atlas. European Commission, Publications Office of the European Union, Luxembourg. 176 pp.

Paoletti M.G. 1999. Invertebrate biodiversity as bioindicators of sustainable landscapes: practical use of invertebrates to assess sustainable land use. Elsevier Academic press.

Wall D.H., Bardgett R.D., Behan-Pelletier V., Herrick J.E., Jones H., Ritz K., Six J., Strong D.R., van der Putten W.H. Soil Ecology and Ecosystem Services 2013. Oxford University Press.

Optional reading:

Bjarnadottir B., Sungur G.A., Sigurdsson B.D., Kjartansson B.T., Oskarsson H., Oddsdottir E.S., Gunnarsdottir G.E., Black A., 2021. Carbon and water balance of an afforested shallow drained peatland in Iceland, Forest Ecology and Management, 482, 2021, 118861, https://doi.org/10.1016/j.foreco.2020.118861.

Decaëns T., Jiménez J.J., Gioia C., Measey G.J., Lavelleb P. 2006. The values of soil animals for conservation biology. European Journal of Soil Biology 42 S23–S38

European Commission 2010. The factory of life. Why soil biodiversity is so important, Luxembourg: Office for Official Publications of the European Communities, doi 10.2779/17050

Ilieva-Makulec K., Bjarnadottir B., Sigurdsson B.D. 2015. Soil nematode communities on Surtsey, 50 years after the formation of the volcanic island. Icelandic Agricultural Sciences, 28, 1, 43-58.

Ilieva-Makulec, K.; Tyburski, J.; Makulec, G. 2016. Soil nematodes in organic and conventional farming system: A comparison of the taxonomic and functional diversity, Polish Journal of Ecology, DOI: 10.3161/15052249PJE2016.64.4.010

Sigurdsson, B.D.; Leblans, N.I.W.; Dauwe, S.; Gudmundsdóttir, E.; Gundersen, P.; Gunnarsdóttir, G.E.; Holmstrup, M.; Ilieva-Makulec, K.; Kätterer, T.; Marteinsdóttir, B. et al. 2016. Geothermal ecosystems as natural climate change experiments: The ForHot research site in Iceland as a case study. Icelandic Agricultural Sciences, DOI: 10.16886/IAS.2016.05

Swift M.J., Izac A.-M.N., van Noordwijk M. Biodiversity and ecosystem services in agricultural landscapes—are we asking the right questions? Agriculture, Ecosystems and Environment 104 (2004) 113–134

Turbé A., De Toni A., Benito P., Lavelle P., Lavelle P., Ruiz N., Van der Putten W. H., Labouze E., Mudgal S. 2010. Soil biodiversity: functions, threats and tools for policy makers. Bio Intelligence Service, IRD, and NIOO, Report for European Commission (DG Environment).

Walker T.W.N., Janssens I.A., Weedon J.T.,Sigurdsson B.D., Richter A.,Peñuelas J., Leblans N.I.W., Bahn M., Bartrons M., De Jonge C., Fuchslueger L., Gargallo-Garriga A., Gunnarsdóttir G.E., Marañón-Jiménez S., Oddsdóttir E.S., Ostonen I., Poeplau Ch., Prommer J., Radujković D., Sardans J., Sigurðsson P., Soong J.L., Vicca S., Wallander H., Ilieva-Makulec K., Verbruggen E., 2020. A systemic overreaction to years versus decades of warming in a subarctic grassland ecosystem. Nature Ecology and Evolution, 4: 101-108.

Web site

https://www.skogur.is/static/files/radstefnur/car-es-2021/dagur2/talk-04-_-brynhildur-_-car_es_2021.pdf

Efekty uczenia się:

Learning outcomes:

Knowledge:

 Student knows basic concepts about the role of soil biodiversity for the soil services and sustainability

 Student identifies the causes of soil degradation

 Student recognises the potential of using living organisms for the assessment of the soil health

Skills:

 Student has the skills to obtain data on the natural and transformed environment based on self-planned and self-conducted laboratory and field research.

 Student analyses relations between living organisms and non-living environment

 Student selects appropriate bioindicators and justifies their use to assess the condition (quality) of the soil environment in a particular situation

Competencies

 Student demonstrates a pro-ecological attitude in everyday life.

 Student recognizes the relationship between living organisms and non-living environment.

ECTS+ 180/30 = 6 ECTS

attendance - 30 h

learning new specialized vocabulary (30 h)

preparing for the discussion on a given subject (30 h)

preparing for the classes (30 h)

two laboratory classes reports in the form of a presentation (30 h)

final test (30 h)

Metody i kryteria oceniania:

Assessment criteria:

1) obligatory attendance (1 unjustified absence is allowed) (10% of the final grade)

2) active participation in the classes (10% of the final grade)

3) two laboratory classes reports in the form of a presentation (40%)

4) final theoretic test (40% of the final grade)

Zakres tematów:

Lectures

1. What is soil? Soil forming factors. Soil as a habitat. Soil structure and soil biota. The role of soil organisms in the processes of soil formation and organic matter transformation. Comparison of the soil-forming processes in Iceland and Poland.

2. Diversity and distribution of soil organisms in Europe - in different ecosystems (natural and managed ecosystems) and different zones (e.g. temperate (Poland) and boreal (Iceland). Patterns of soil biodiversity.

3. Interactions between soil organisms and the soil itself. Epedaphic, hemiedaphic, euedaphic organisms. Geobionts, periodical geophiles, temporarily active geophiles. Adaptations to soil habitat.

4. Size classification of the soil organisms by body width. Macrofauna, meso- and microfauna and microorganisms – main groups, numbers, diversity and their role in the soil.

5. The importance of soil biodiversity. Ecosystem services (supplies, supporting, regulation) provided by soil biota: (decomposing plant and animal residues, transforming and recycling nutrients, storing and releasing water, maintenance of soil structure and fertility, provision of clean drinking water, sequestering and detoxifying organic toxicants, bioremediation of pollutants, pest and pathogen control, erosion control, mitigation of floods and droughts, regulation of atmospheric trace gases). The economic value of soil biodiversity.

6. Use of soil invertebrates in soil biodiversity assessment and as soil biological quality indices (monitoring of pollutant effects; evaluation of environmental impact of agricultural management practices; using soil invertebrates as bioindicators of urban soil quality). Parameters of soil animal communities used for soil quality evaluation.

7. Current threats to soil biodiversity: (contamination (chemicals), soil compaction and sealing, erosion, decline of organic matter, salinisation, landslides, deforestation, climate changes, agricultural practices (deep tillage, the use of chemical fertilisers and pesticides, the removal of crop residues), desertification, acidification).

8. Current threats to soil biodiversity in Poland and Iceland – a comparison. Discussing the research of the ForHot project (Iceland) as a case study on the impact of climate change on biodiversity and soil functioning. Discussing the ongoing expansion of the invasive species (Lupinus arcticus, arctic lupine) in Iceland and its impact on soil life and quality.

9. Management strategies for soil biodiversity restoration, conservation and sustainable production. Practices which tend to promote soil health and practices which tend to reduce soil health in Poland and Iceland. Discussing the research in the WetWood project (Iceland) as a case study to demonstrate the role of afforestation to limit or mitigate GHG emissions from drained peatlands.

Metody dydaktyczne:

lecture presentations, discussions, case studies, laboratory experiments and techniques used in soil ecology.

e-learning: qiuzes, crosswords etc.

Grupy zajęciowe

zobacz na planie zajęć

Grupa Termin(y) Prowadzący Miejsca Liczba osób w grupie / limit miejsc Akcje
1 co drugi piątek (nieparzyste), 13:15 - 14:45, sala 308
Krassimira Ilieva-Makulec 0/5 szczegóły
Wszystkie zajęcia odbywają się w budynku:
Kampus Wóycickiego Bud. 24
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Kardynała Stefana Wyszyńskiego w Warszawie.
ul. Dewajtis 5,
01-815 Warszawa
tel: +48 22 561 88 00 https://uksw.edu.pl
kontakt deklaracja dostępności USOSweb 7.0.3.0-1 (2024-04-02)