Uniwersytet Kardynała Stefana Wyszyńskiego w Warszawie - Centralny System UwierzytelnianiaNie jesteś zalogowany | zaloguj się
AKTUALNOŚCI KATALOG MÓJ USOSWEB DLA STUDENTÓW DLA PRACOWNIKÓW DLA WSZYSTKICH
Ecological engineering by living organisms: Non-trophic interactions in belowground systems
katalog przedmiotów - pomoc

Ecological engineering by living organisms: Non-trophic interactions in belowground systems

Informacje ogólne

Kod przedmiotu: WF-OB-TIUNOVECO-ER Kod Erasmus / ISCED: 07.2 / (brak danych)
Nazwa przedmiotu: Ecological engineering by living organisms: Non-trophic interactions in belowground systems
Jednostka: Instytut Ekologii i Bioetyki
Grupy: Grupa przedmiotów - oferta Erasmus
Punkty ECTS i inne: 4.00
Język prowadzenia: angielski
Poziom przedmiotu: zaawansowany
Symbol/Symbole efektów kształcenia: OB2_W09
OB2_W12
OB2_U01
OB2_U09
Skrócony opis:

Main aim of the course is developing a broad understanding of numerous ecological links that shape ecological communities and ensure ecosystem functioning. Non-trophic ecological interactions are notoriously diverse in belowground systems. “Engineering” activity of soil organisms governs the formation of soil aggregates, development of the soil profile, shapes microbial and animal communities, and affects carbon and nutrients turnover. Explicit consideration of the not-trophic interactions and engineering activity of animals is essential for reconstructing the history of modern ecosystem, understanding current C dynamics and detecting expected non-linear responses to global change. Several groups of terrestrial organisms, such as mycorrhizal fungi, earthworms, termites and large herbivores are especially important as ecosystem engineers and their activity will be considered in more detail.

Pełny opis:

Main aim of the course is developing a broad understanding of numerous ecological links that shape ecological communities and ensure ecosystem functioning. Non-trophic ecological interactions are notoriously diverse in belowground systems. “Engineering” activity of soil organisms governs the formation of soil aggregates, development of the soil profile, shapes microbial and animal communities, and affects carbon and nutrients turnover. Explicit consideration of the not-trophic interactions and engineering activity of animals is essential for reconstructing the history of modern ecosystem, understanding current C dynamics and detecting expected non-linear responses to global change. Several groups of terrestrial organisms, such as mycorrhizal fungi, earthworms, termites and large herbivores are especially important as ecosystem engineers and their activity will be considered in more detail.

Content:

1. Trophic and non-trophic interactions in ecological systems: general introduction.

2. Ecosystem engineering in soil: main concepts.

3. Soil bioturbation: plant roots, earthworms, social insects, burrowing vertebrates.

4. Ecosystem engineering and related concepts (niche construction, keystone species).

5. “Foric”, “Fabric”, “Topic” and “Trophic” ecological interactions.

6. Physical engineering 1: Earthworms and earthworm invasion into earthworm-free ecosystems.

7. Physical engineering 2: Ants, termites, and other arthropods.

8. Physical engineering 3: Extant vertebrates and extinct megafauna.

9. Biogeography of invertebrate ecosystem engineers.

10. Not only engineering: Information, stress and behavior.

11. Roots, stems, and aboveground-belowground interactions.

12. Mycorrhizal network.

13. Living and dead microorganisms: SOM formation and destruction.

14. Animal-microbial interactions in soil: animal gut as an environment.

15. Ecological engineering belowground: ecosystem-level consequences.

Literatura:

Darwin C. (1881) The formation of vegetable mould through the action of worms, with observations of their habits. London, John Murray.

Meysman F.J.R., Middelburg J.J., Heip C.H.R. (2006) Bioturbation: a fresh look at Darwin's last idea. Trends in Ecology & Evolution, 21: 688-695.

Jones C.G., Lawton J.H., Shachak M. (1994) Organisms as Ecosystem Engineers. Oikos, 69: 373-386.

Wright J.P., Jones C.G. (2006) The concept of organisms as ecosystem engineers ten years on: Progress, limitations, and challenges. BioScience, 56: 203-209.

Bruno J.F., Stachowicz J.J., Bertness M.D. (2003) Inclusion of facilitation into ecological theory. Trends in Ecology & Evolution, 18: 119-125.

Schmitz O.J., Raymond P.A., Estes J.A., Kurz W.A., Holtgrieve G.W., Ritchie M.E., Schindler D.E., Spivak A.C., Wilson R.W., Bradford M.A., Christensen V., Deegan L., Smetacek V., Vanni M.J., Wilmers C.C. (2014) Animating the carbon cycle. Ecosystems, 17: 344-359.

Jouquet P., Dauber J., Lagerlof J., Lavelle P., Lepage M. (2006) Soil invertebrates as ecosystem engineers: Intended and accidental effects on soil and feedback loops. Applied Soil Ecology, 32: 153-164.

Frelich L.E., Hale C.M., Scheu S., Holdsworth A.R., Heneghan L., Bohlen P.J., Reich P.B. (2006) Earthworm invasion into previously earthworm-free temperate and boreal forests. Biological Invasions, 8: 1235-1245.

Brussaard L., Aanen D.K., Briones M.J.I., Decaens T., De Deyn G.B., Fayle T.M., James S.W., Nobre T. (2012) Biogeography and phylogenetic community structure of soil invertebrate ecosystem engineers: Global to local patterns, implications for ecosystem functioning and services and global environmental change impacts. In: Wall D.H., et al. (eds.) Soil Ecology and Ecosystem Services. Oxford University Press, pp. 201-232.

Filser J., Faber J.H., Tiunov A.V., Brussaard L., Frouz J., De Deyn G., Uvarov A.V., Berg M.P., Lavelle P., Loreau M., Wall D.H., Querner P., Eijsackers H., Jiménez J.J. (2016) Soil fauna: key to new carbon models. SOIL, 2: 565-582.

Literature will be provided during the course.

Metody i kryteria oceniania:

1. 70% attendance.

2. Activity on the e-learning platform

3. Final test (100-90% very good, 80-70% good, 60-50% satisfactory, less than 50% insufficient).

Zajęcia w cyklu "Semestr letni 2017/18" (jeszcze nie rozpoczęty)

Okres: 2018-02-01 - 2018-06-30
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć: Wykład, 30 godzin, 20 miejsc więcej informacji
Koordynatorzy: Dominika Dzwonkowska, Kamil Karaban, Agnieszka Szymańska, Adam Świeżyński, Aleksy Tiunov
Prowadzący grup: Agnieszka Szymańska, Adam Świeżyński, Aleksy Tiunov
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzaminacyjny
E-Learning: E-Learning (pełny kurs) z podziałem na grupy
Typ przedmiotu: fakultatywny dowolnego wyboru
Skrócony opis:

Main aim of the course is developing a broad understanding of numerous ecological links that shape ecological communities and ensure ecosystem functioning. Non-trophic ecological interactions are notoriously diverse in belowground systems. “Engineering” activity of soil organisms governs the formation of soil aggregates, development of the soil profile, shapes microbial and animal communities, and affects carbon and nutrients turnover. Explicit consideration of the not-trophic interactions and engineering activity of animals is essential for reconstructing the history of modern ecosystem, understanding current C dynamics and detecting expected non-linear responses to global change. Several groups of terrestrial organisms, such as mycorrhizal fungi, earthworms, termites and large herbivores are especially important as ecosystem engineers and their activity will be considered in more detail.

Pełny opis:

Main aim of the course is developing a broad understanding of numerous ecological links that shape ecological communities and ensure ecosystem functioning. Non-trophic ecological interactions are notoriously diverse in belowground systems. “Engineering” activity of soil organisms governs the formation of soil aggregates, development of the soil profile, shapes microbial and animal communities, and affects carbon and nutrients turnover. Explicit consideration of the not-trophic interactions and engineering activity of animals is essential for reconstructing the history of modern ecosystem, understanding current C dynamics and detecting expected non-linear responses to global change. Several groups of terrestrial organisms, such as mycorrhizal fungi, earthworms, termites and large herbivores are especially important as ecosystem engineers and their activity will be considered in more detail.

Content:

1. Trophic and non-trophic interactions in ecological systems: general introduction.

2. Ecosystem engineering in soil: main concepts.

3. Soil bioturbation: plant roots, earthworms, social insects, burrowing vertebrates.

4. Ecosystem engineering and related concepts (niche construction, keystone species).

5. “Foric”, “Fabric”, “Topic” and “Trophic” ecological interactions.

6. Physical engineering 1: Earthworms and earthworm invasion into earthworm-free ecosystems.

7. Physical engineering 2: Ants, termites, and other arthropods.

8. Physical engineering 3: Extant vertebrates and extinct megafauna.

9. Biogeography of invertebrate ecosystem engineers.

10. Not only engineering: Information, stress and behavior.

11. Roots, stems, and aboveground-belowground interactions.

12. Mycorrhizal network.

13. Living and dead microorganisms: SOM formation and destruction.

14. Animal-microbial interactions in soil: animal gut as an environment.

15. Ecological engineering belowground: ecosystem-level consequences.

Literatura:

Darwin C. (1881) The formation of vegetable mould through the action of worms, with observations of their habits. London, John Murray.

Meysman F.J.R., Middelburg J.J., Heip C.H.R. (2006) Bioturbation: a fresh look at Darwin's last idea. Trends in Ecology & Evolution, 21: 688-695.

Jones C.G., Lawton J.H., Shachak M. (1994) Organisms as Ecosystem Engineers. Oikos, 69: 373-386.

Wright J.P., Jones C.G. (2006) The concept of organisms as ecosystem engineers ten years on: Progress, limitations, and challenges. BioScience, 56: 203-209.

Bruno J.F., Stachowicz J.J., Bertness M.D. (2003) Inclusion of facilitation into ecological theory. Trends in Ecology & Evolution, 18: 119-125.

Schmitz O.J., Raymond P.A., Estes J.A., Kurz W.A., Holtgrieve G.W., Ritchie M.E., Schindler D.E., Spivak A.C., Wilson R.W., Bradford M.A., Christensen V., Deegan L., Smetacek V., Vanni M.J., Wilmers C.C. (2014) Animating the carbon cycle. Ecosystems, 17: 344-359.

Jouquet P., Dauber J., Lagerlof J., Lavelle P., Lepage M. (2006) Soil invertebrates as ecosystem engineers: Intended and accidental effects on soil and feedback loops. Applied Soil Ecology, 32: 153-164.

Frelich L.E., Hale C.M., Scheu S., Holdsworth A.R., Heneghan L., Bohlen P.J., Reich P.B. (2006) Earthworm invasion into previously earthworm-free temperate and boreal forests. Biological Invasions, 8: 1235-1245.

Brussaard L., Aanen D.K., Briones M.J.I., Decaens T., De Deyn G.B., Fayle T.M., James S.W., Nobre T. (2012) Biogeography and phylogenetic community structure of soil invertebrate ecosystem engineers: Global to local patterns, implications for ecosystem functioning and services and global environmental change impacts. In: Wall D.H., et al. (eds.) Soil Ecology and Ecosystem Services. Oxford University Press, pp. 201-232.

Filser J., Faber J.H., Tiunov A.V., Brussaard L., Frouz J., De Deyn G., Uvarov A.V., Berg M.P., Lavelle P., Loreau M., Wall D.H., Querner P., Eijsackers H., Jiménez J.J. (2016) Soil fauna: key to new carbon models. SOIL, 2: 565-582.

Literature will be provided during the course.

Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Kardynała Stefana Wyszyńskiego w Warszawie.