Soil Biodiversity, Functions and Ecosystem Services and Role in Sustainabe Food and Biomass Production
Informacje ogólne
Kod przedmiotu: | WF-OB-POSB |
Kod Erasmus / ISCED: |
07.2
|
Nazwa przedmiotu: | Soil Biodiversity, Functions and Ecosystem Services and Role in Sustainabe Food and Biomass Production |
Jednostka: | Centrum Ekologii i Ekofilozofii |
Grupy: |
Wykłady monograficzne w języku obcym z nauk biologicznych na poziomie B2+ Zajęcia w językach obcych w Instytucie Ekologii i Bioetyki |
Punkty ECTS i inne: |
5.00
LUB
6.00
LUB
4.00
(zmienne w czasie)
|
Język prowadzenia: | angielski |
Poziom przedmiotu: | średnio-zaawansowany |
Symbol/Symbole kierunkowe efektów uczenia się: | OB2_W09 OB2_W12 OB2_U01 OB2_U09 |
Wymagania wstępne: | basic knowledge on biology and ecology |
Skrócony opis: |
The aim of the course is to turn the students attention to the soil as a complex habitat of high biological diversity, which supports the functioning of terrestrial ecosystems. The course provides information about the major groups of organisms that live in the soil and their role in the natural and managed ecosystems. A strong emphasis is put on the factors influencing soil biodiversity and the services provided by soil biodiversity. The course offers also some training in sampling and assessing the density and diversity of some soil animal groups and using them as soil biological quality indices. In the year 2024-2025 the course will be conducted in the form of lectures and will last for 15 hours. |
Pełny opis: |
Lectures 1. Diversity of soil organisms in different ecosystems (natural and managed ecosystems). Patterns of soil biodiversity. Factors influencing soil biodiversity. 2. The role of soil organisms in the processes of soil formation and organic matter transformation. 3. The importance of soil biodiversity. Ecosystem services provided by soil biota. The economic value of soil biodiversity. 4. Use of soil invertebrates in soil biodiversity assessment and as soil biological quality indices (monitoring of pollutant effects; evaluation of environmental impact of agricultural management practices; using soil invertebrates as bioindicators of urban soil quality). Parameters of soil animal communities used for soil quality evaluation. 5. Current threats to soil biodiversity. Management strategies for soil biodiversity restoration, conservation and sustainable production. Classes 1. Standard sampling methods (frequency of sampling, number and storage of samples) used in soil ecology. Quantitative and qualitative methods for assessing the abundance of soil animals (including nematodes, springtails, mites, earthworms, snails, etc.). Biotests using soil invertebrates. 2. Methods for extraction of animals from soil, preservation of samples, microscopic preparations. Microscopy techniques, creating photographic documentation. 3. Analysis of the abundance (density) of different groups of soil fauna in selected habitats. 4. Diversity analysis of soil fauna in collected samples - species richness, ecological groups and sentinel species. 5. Summary and interpretation of obtained results - presentations. Discussion on the practical use of soil animals as bioindicators - possibilities and limitations. |
Literatura: |
Bardgett R. 2005. The Biology of Soil. Oxford University Press. Bardgett R.D. 2015. Earth Matters: How soil underlies civilization. Oxford University Press. Bardgett R.D., Usher B., Hopkins D.W. 2005. Biological diversity and functions in soils. Cambridge University Press. Bardgett R.D., Wardle D.A. 2010. Aboveground-belowground linkages. Biotic interactions, ecosystem processes, and global change. Oxford Series in Ecology and Evolution. Coleman D.C., Crossley D.A., Hendrix Jr. P.F. 2004. Fundamentals of Soil Ecology. Elsevier Academic press. Edwards C.A., Bohlen P.J. 1996. Biology and Ecology of earthworms. Chapman and Hall, London. Lavelle P., Spain A.V. 2005. Soil Ecology. Kluwer Academic Publishers, Dordrecht. Paoletti M.G. 1999. Invertebrate biodiversity as bioindicators of sustainable landscapes: practical use of invertebrates to assess sustainable land use. Elsevier Academic press. Wall D.H., Bardgett R.D., Behan-Pelletier V., Herrick J.E., Jones H., Ritz K., Six J., Strong D.R., van der Putten W.H. Soil Ecology and Ecosystem Services 2013. Oxford University Press. |
Efekty kształcenia i opis ECTS: |
Knowledge - Students know basic concepts about the role of soil biodiversity for the soil services and sustainabilility - Students know the specialist terminology related to soil biodiversity and sustainability Skills: Students perform lab experiments (presentations) indicating the role of soil organisms in soil processes (decomposition) and pointing out their indicator function Students can perform projects working successfully alone or in a team ECTS+ 180/30 = 6 ECTS attendance - 30 h learning new specialised vocabulary (30h) preparing for the discussion on a given sunbject (30 h) preparing for the classess (30 h) final laboratory classes report in the form of a presentation (30 h) preparing for final test (quiz) (30 h) |
Metody i kryteria oceniania: |
1) obligatory attendance (1 unjustified absence is allowed) (10%) 2) active participation (10%) 3) final laboratory classes report in the form of a presentation (40%) 4) final test (40%) |
Zajęcia w cyklu "Semestr letni 2021/22" (zakończony)
Okres: | 2022-02-01 - 2022-06-30 |
Przejdź do planu
PN WT ŚR CZ PT WYK
CW
|
Typ zajęć: |
Ćwiczenia, 15 godzin, 3 miejsc
Wykład, 15 godzin, 3 miejsc
|
|
Koordynatorzy: | Krassimira Ilieva-Makulec | |
Prowadzący grup: | Krassimira Ilieva-Makulec | |
Strona przedmiotu: | https://teams.microsoft.com/l/team/19%3aa224e412932b47f3bd83feff646218df%40thread.tacv2/conversations?groupId=aa754a4d-3de0-463c-8f26-948d36f427db&tenantId=12578430-c51b-4816-8163-c7281035b9b3 | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Egzaminacyjny
Ćwiczenia - Zaliczenie na ocenę Wykład - Egzaminacyjny |
|
E-Learning: | E-Learning (pełny kurs) z podziałem na grupy |
|
Skrócony opis: |
The aim of the course is to turn the students attention to the soil as a complex habitat of high biological diversity, which supports the functioning of terrestrial ecosystems. The course provides information about the major groups of organisms that live in the soil and their role in the natural and managed ecosystems. A strong emphasis is put on the factors influencing soil biodiversity and the services provided by soil biodiversity. The course offers also some training in sampling and assessing the density and diversity of some soil animal groups and using them as soil biological quality indices. |
|
Pełny opis: |
Lectures 1. Diversity of soil organisms in different ecosystems (natural and managed ecosystems). Patterns of soil biodiversity. Factors influencing soil biodiversity. 2. The role of soil organisms in the processes of soil formation and organic matter transformation. 3. The importance of soil biodiversity. Ecosystem services provided by soil biota. The economic value of soil biodiversity. 4. Use of soil invertebrates in soil biodiversity assessment and as soil biological quality indices (monitoring of pollutant effects; evaluation of environmental impact of agricultural management practices; using soil invertebrates as bioindicators of urban soil quality). Parameters of soil animal communities used for soil quality evaluation. 5. Current threats to soil biodiversity. Management strategies for soil biodiversity restoration, conservation and sustainable production. Classes 1. Standard sampling methods (frequency of sampling, number and storage of samples) used in soil ecology. Quantitative and qualitative methods for assessing the abundance of soil animals (including nematodes, springtails, mites, earthworms, snails, etc.). Biotests using soil invertebrates. 2. Methods for extraction of animals from soil, preservation of samples, microscopic preparations. Microscopy techniques, creating photographic documentation. 3. Analysis of the abundance (density) of different groups of soil fauna in selected habitats. 4. Diversity analysis of soil fauna in collected samples - species richness, ecological groups and sentinel species. 5. Summary and interpretation of obtained results - presentations. Discussion on the practical use of soil animals as bioindicators - possibilities and limitations. |
|
Literatura: |
Bardgett R. 2005. The Biology of Soil. Oxford University Press. Bardgett R.D. 2015. Earth Matters: How soil underlies civilization. Oxford University Press. Bardgett R.D., Usher B., Hopkins D.W. 2005. Biological diversity and functions in soils. Cambridge University Press. Bardgett R.D., Wardle D.A. 2010. Aboveground-belowground linkages. Biotic interactions, ecosystem processes, and global change. Oxford Series in Ecology and Evolution. Coleman D.C., Crossley D.A., Hendrix Jr. P.F. 2004. Fundamentals of Soil Ecology. Elsevier Academic press. Edwards C.A., Bohlen P.J. 1996. Biology and Ecology of earthworms. Chapman and Hall, London. Lavelle P., Spain A.V. 2005. Soil Ecology. Kluwer Academic Publishers, Dordrecht. Paoletti M.G. 1999. Invertebrate biodiversity as bioindicators of sustainable landscapes: practical use of invertebrates to assess sustainable land use. Elsevier Academic press. Wall D.H., Bardgett R.D., Behan-Pelletier V., Herrick J.E., Jones H., Ritz K., Six J., Strong D.R., van der Putten W.H. Soil Ecology and Ecosystem Services 2013. Oxford University Press. |
|
Wymagania wstępne: |
basic knowledge on biology and ecology |
Zajęcia w cyklu "Semestr letni 2022/23" (zakończony)
Okres: | 2023-02-01 - 2023-06-30 |
Przejdź do planu
PN WT ŚR CZ PT WYK
CW
|
Typ zajęć: |
Ćwiczenia, 15 godzin, 3 miejsc
Wykład, 15 godzin, 3 miejsc
|
|
Koordynatorzy: | Krassimira Ilieva-Makulec | |
Prowadzący grup: | Krassimira Ilieva-Makulec | |
Strona przedmiotu: | https://teams.microsoft.com/l/team/19%3aa224e412932b47f3bd83feff646218df%40thread.tacv2/conversations?groupId=aa754a4d-3de0-463c-8f26-948d36f427db&tenantId=12578430-c51b-4816-8163-c7281035b9b3 | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Egzaminacyjny
Ćwiczenia - Zaliczenie na ocenę Wykład - Egzaminacyjny |
|
E-Learning: | E-Learning (pełny kurs) z podziałem na grupy |
|
Skrócony opis: |
The aim of the course is to turn the students attention to the soil as a complex habitat of high biological diversity, which supports the functioning of terrestrial ecosystems. The course provides information about the major groups of organisms that live in the soil and their role in the natural and managed ecosystems. A strong emphasis is put on the factors influencing soil biodiversity and the services provided by soil biodiversity. The course offers also some training in sampling and assessing the density and diversity of some soil animal groups and using them as soil biological quality indices. The syllabus takes into account the knowledge gained from the project Wyzwania zrównoważonego rozwoju FRSE, projekt nr EOG/21/K4/W/0028 |
|
Pełny opis: |
Lectures 1. What is soil? Soil forming factors. Soil as a habitat. Soil structure and soil biota. The role of soil organisms in the processes of soil formation and organic matter transformation. Comparison of the soil-forming processes in Iceland and Poland. 2. Diversity and distribution of soil organisms in Europe - in different ecosystems (natural and managed ecosystems) and different zones (e.g. temperate (Poland) and boreal (Iceland). Patterns of soil biodiversity. 3. Interactions between soil organisms and the soil itself. Epedaphic, hemiedaphic, euedaphic organisms. Geobionts, periodical geophiles, temporarily active geophiles. Adaptations to soil habitat. 4. Size classification of the soil organisms by body width. Macrofauna, meso- and microfauna and microorganisms – main groups, numbers, diversity and their role in the soil. 5. The importance of soil biodiversity. Ecosystem services (supplies, supporting, regulation) provided by soil biota: (decomposing plant and animal residues, transforming and recycling nutrients, storing and releasing water, maintenance of soil structure and fertility, provision of clean drinking water, sequestering and detoxifying organic toxicants, bioremediation of pollutants, pest and pathogen control, erosion control, mitigation of floods and droughts, regulation of atmospheric trace gases). The economic value of soil biodiversity. 6. Use of soil invertebrates in soil biodiversity assessment and as soil biological quality indices (monitoring of pollutant effects; evaluation of environmental impact of agricultural management practices; using soil invertebrates as bioindicators of urban soil quality). Parameters of soil animal communities used for soil quality evaluation. 7. Current threats to soil biodiversity: (contamination (chemicals), soil compaction and sealing, erosion, decline of organic matter, salinisation, landslides, deforestation, climate changes, agricultural practices (deep tillage, the use of chemical fertilisers and pesticides, the removal of crop residues), desertification, acidification). 8. Current threats to soil biodiversity in Poland and Iceland – a comparison. Discussing the research of the ForHot project (Iceland) as a case study on the impact of climate change on biodiversity and soil functioning. Discussing the ongoing expansion of the invasive species (Lupinus arcticus, arctic lupine) in Iceland and its impact on soil life and quality. 9. Management strategies for soil biodiversity restoration, conservation and sustainable production. Practices which tend to promote soil health and practices which tend to reduce soil health in Poland and Iceland. Discussing the research in the WetWood project (Iceland) as a case study to demonstrate the role of afforestation to limit or mitigate GHG emissions from drained peatlands. Classes 1. Sampling methods (frequency of sampling, number and storage of samples). Quantitative and qualitative methods for assessing the abundance of soil animals (including nematodes, springtails, mites, earthworms, snails, etc.). 2. Methods for extraction of animals from soil, preservation of samples, microscopic preparations. Microscopy techniques, creating photographic documentation. 3. Laboratory experiments performed by students aimed to study: i) The influence of different practices on soil fauna and ii) The importance of soil microorganisms and soil fauna in decomposition process 4. Analysis of the abundance (density) of different groups of soil fauna in the two laboratory experiments. Diversity analysis of soil fauna in collected samples - species richness, ecological groups and sentinel species. 5. Summary and interpretation of obtained results – reports and presentations. 6. Discussion on the practical use of soil animals as bioindicators - possibilities and limitations. |
|
Literatura: |
Obligatory reading: Bardgett R. 2005. The Biology of Soil. Oxford University Press. Bardgett R.D. 2015. Earth Matters: How soil underlies civilization. Oxford University Press. Bardgett R.D., Usher B., Hopkins D.W. 2005. Biological diversity and functions in soils. Cambridge University Press. Bardgett R.D., Wardle D.A. 2010. Aboveground-belowground linkages. Biotic interactions, ecosystem processes, and global change. Oxford Series in Ecology and Evolution. Coleman D.C., Crossley D.A., Hendrix Jr. P.F. 2004. Fundamentals of Soil Ecology. Elsevier Academic press. Jeffery S. , Gardi C., Jones A., Montanarella L., Marmo L., Miko L., Ritz K., Peres G., Römbke J. and van der Putten W. H. (eds.), 2010, European Atlas of Soil Biodiversity. European Commission, Publications Office of the European Union, Luxembourg. Lavelle P., Spain A.V. 2005. Soil Ecology. Kluwer Academic Publishers, Dordrecht. Lavelle P.,. Decaëns T., Aubert M., Barot S., Blouin M., Bureau F., Margerie P., Mora P., Rossi J.-P. 2006. Soil invertebrates and ecosystem services European Journal of Soil Biology 42, S3–S15. Orgiazzi, A., Bardgett, R.D., Barrios, E., Behan-Pelletier, V., Briones, M.J.I., Chotte, J-L., De Deyn, G.B., Eggleton, P., Fierer, N., Fraser, T., Hedlund, K., Jeffery, S., Johnson, N.C., Jones, A., Kandeler, E., Kaneko, N., Lavelle, P., Lemanceau, P., Miko, L., Montanarella, L., Moreira, F.M.S., Ramirez, K.S., Scheu, S., Singh, B.K., Six, J., van der Putten, W.H., Wall, D.H. (Eds.), 2016, Global Soil Biodiversity Atlas. European Commission, Publications Office of the European Union, Luxembourg. 176 pp. Paoletti M.G. 1999. Invertebrate biodiversity as bioindicators of sustainable landscapes: practical use of invertebrates to assess sustainable land use. Elsevier Academic press. Wall D.H., Bardgett R.D., Behan-Pelletier V., Herrick J.E., Jones H., Ritz K., Six J., Strong D.R., van der Putten W.H. Soil Ecology and Ecosystem Services 2013. Oxford University Press. Optional reading: Bjarnadottir B., Sungur G.A., Sigurdsson B.D., Kjartansson B.T., Oskarsson H., Oddsdottir E.S., Gunnarsdottir G.E., Black A., 2021. Carbon and water balance of an afforested shallow drained peatland in Iceland, Forest Ecology and Management, 482, 2021, 118861, https://doi.org/10.1016/j.foreco.2020.118861. Decaëns T., Jiménez J.J., Gioia C., Measey G.J., Lavelleb P. 2006. The values of soil animals for conservation biology. European Journal of Soil Biology 42 S23–S38 European Commission 2010. The factory of life. Why soil biodiversity is so important, Luxembourg: Office for Official Publications of the European Communities, doi 10.2779/17050 Ilieva-Makulec K., Bjarnadottir B., Sigurdsson B.D. 2015. Soil nematode communities on Surtsey, 50 years after the formation of the volcanic island. Icelandic Agricultural Sciences, 28, 1, 43-58. Ilieva-Makulec, K.; Tyburski, J.; Makulec, G. 2016. Soil nematodes in organic and conventional farming system: A comparison of the taxonomic and functional diversity, Polish Journal of Ecology, DOI: 10.3161/15052249PJE2016.64.4.010 Sigurdsson, B.D.; Leblans, N.I.W.; Dauwe, S.; Gudmundsdóttir, E.; Gundersen, P.; Gunnarsdóttir, G.E.; Holmstrup, M.; Ilieva-Makulec, K.; Kätterer, T.; Marteinsdóttir, B. et al. 2016. Geothermal ecosystems as natural climate change experiments: The ForHot research site in Iceland as a case study. Icelandic Agricultural Sciences, DOI: 10.16886/IAS.2016.05 Swift M.J., Izac A.-M.N., van Noordwijk M. Biodiversity and ecosystem services in agricultural landscapes—are we asking the right questions? Agriculture, Ecosystems and Environment 104 (2004) 113–134 Turbé A., De Toni A., Benito P., Lavelle P., Lavelle P., Ruiz N., Van der Putten W. H., Labouze E., Mudgal S. 2010. Soil biodiversity: functions, threats and tools for policy makers. Bio Intelligence Service, IRD, and NIOO, Report for European Commission (DG Environment). Walker T.W.N., Janssens I.A., Weedon J.T.,Sigurdsson B.D., Richter A.,Peñuelas J., Leblans N.I.W., Bahn M., Bartrons M., De Jonge C., Fuchslueger L., Gargallo-Garriga A., Gunnarsdóttir G.E., Marañón-Jiménez S., Oddsdóttir E.S., Ostonen I., Poeplau Ch., Prommer J., Radujković D., Sardans J., Sigurðsson P., Soong J.L., Vicca S., Wallander H., Ilieva-Makulec K., Verbruggen E., 2020. A systemic overreaction to years versus decades of warming in a subarctic grassland ecosystem. Nature Ecology and Evolution, 4: 101-108. Web site https://www.skogur.is/static/files/radstefnur/car-es-2021/dagur2/talk-04-_-brynhildur-_-car_es_2021.pdf |
|
Wymagania wstępne: |
basic knowledge on biology and ecology |
Zajęcia w cyklu "Semestr zimowy 2023/24" (zakończony)
Okres: | 2023-10-01 - 2024-01-31 |
Przejdź do planu
PN WT ŚR CZ PT SO WYK
|
Typ zajęć: |
Wykład, 15 godzin, 20 miejsc
|
|
Koordynatorzy: | Krassimira Ilieva-Makulec | |
Prowadzący grup: | Krassimira Ilieva-Makulec | |
Strona przedmiotu: | https://teams.microsoft.com/l/team/19%3aa224e412932b47f3bd83feff646218df%40thread.tacv2/conversations?groupId=aa754a4d-3de0-463c-8f26-948d36f427db&tenantId=12578430-c51b-4816-8163-c7281035b9b3 | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Egzaminacyjny
Wykład - Egzaminacyjny |
|
E-Learning: | E-Learning (pełny kurs) z podziałem na grupy |
|
Skrócony opis: |
The aim of the course is to turn the students attention to the soil as a complex habitat of high biological diversity, which supports the functioning of terrestrial ecosystems. The course provides information about the major groups of organisms that live in the soil and their role in the natural and managed ecosystems. A strong emphasis is put on the factors influencing soil biodiversity and the services provided by soil biodiversity. The course offers also some training in sampling and assessing the density and diversity of some soil animal groups and using them as soil biological quality indices. The syllabus takes into account the knowledge gained from the project Wyzwania zrównoważonego rozwoju FRSE, projekt nr EOG/21/K4/W/0028 In the year 2023-2024 the course will be conducted in the form of lectures and will last for 15 hours. |
|
Pełny opis: |
Lectures 1. What is soil? Soil forming factors. Soil as a habitat. Soil structure and soil biota. The role of soil organisms in the processes of soil formation and organic matter transformation. Comparison of the soil-forming processes in Iceland and Poland. 2. Diversity and distribution of soil organisms in Europe - in different ecosystems (natural and managed ecosystems) and different zones (e.g. temperate (Poland) and boreal (Iceland). Patterns of soil biodiversity. 3. Interactions between soil organisms and the soil itself. Epedaphic, hemiedaphic, euedaphic organisms. Geobionts, periodical geophiles, temporarily active geophiles. Adaptations to soil habitat. 4. Size classification of the soil organisms by body width. Macrofauna, meso- and microfauna and microorganisms – main groups, numbers, diversity and their role in the soil. 5. The importance of soil biodiversity. Ecosystem services (supplies, supporting, regulation) provided by soil biota: (decomposing plant and animal residues, transforming and recycling nutrients, storing and releasing water, maintenance of soil structure and fertility, provision of clean drinking water, sequestering and detoxifying organic toxicants, bioremediation of pollutants, pest and pathogen control, erosion control, mitigation of floods and droughts, regulation of atmospheric trace gases). The economic value of soil biodiversity. 6. Use of soil invertebrates in soil biodiversity assessment and as soil biological quality indices (monitoring of pollutant effects; evaluation of environmental impact of agricultural management practices; using soil invertebrates as bioindicators of urban soil quality). Parameters of soil animal communities used for soil quality evaluation. 7. Current threats to soil biodiversity: (contamination (chemicals), soil compaction and sealing, erosion, decline of organic matter, salinisation, landslides, deforestation, climate changes, agricultural practices (deep tillage, the use of chemical fertilisers and pesticides, the removal of crop residues), desertification, acidification). 8. Current threats to soil biodiversity in Poland and Iceland – a comparison. Discussing the research of the ForHot project (Iceland) as a case study on the impact of climate change on biodiversity and soil functioning. Discussing the ongoing expansion of the invasive species (Lupinus arcticus, arctic lupine) in Iceland and its impact on soil life and quality. 9. Management strategies for soil biodiversity restoration, conservation and sustainable production. Practices which tend to promote soil health and practices which tend to reduce soil health in Poland and Iceland. Discussing the research in the WetWood project (Iceland) as a case study to demonstrate the role of afforestation to limit or mitigate GHG emissions from drained peatlands. |
|
Literatura: |
Obligatory reading: Bardgett R. 2005. The Biology of Soil. Oxford University Press. Bardgett R.D. 2015. Earth Matters: How soil underlies civilization. Oxford University Press. Bardgett R.D., Usher B., Hopkins D.W. 2005. Biological diversity and functions in soils. Cambridge University Press. Bardgett R.D., Wardle D.A. 2010. Aboveground-belowground linkages. Biotic interactions, ecosystem processes, and global change. Oxford Series in Ecology and Evolution. Coleman D.C., Crossley D.A., Hendrix Jr. P.F. 2004. Fundamentals of Soil Ecology. Elsevier Academic press. Jeffery S. , Gardi C., Jones A., Montanarella L., Marmo L., Miko L., Ritz K., Peres G., Römbke J. and van der Putten W. H. (eds.), 2010, European Atlas of Soil Biodiversity. European Commission, Publications Office of the European Union, Luxembourg. Lavelle P., Spain A.V. 2005. Soil Ecology. Kluwer Academic Publishers, Dordrecht. Lavelle P.,. Decaëns T., Aubert M., Barot S., Blouin M., Bureau F., Margerie P., Mora P., Rossi J.-P. 2006. Soil invertebrates and ecosystem services European Journal of Soil Biology 42, S3–S15. Orgiazzi, A., Bardgett, R.D., Barrios, E., Behan-Pelletier, V., Briones, M.J.I., Chotte, J-L., De Deyn, G.B., Eggleton, P., Fierer, N., Fraser, T., Hedlund, K., Jeffery, S., Johnson, N.C., Jones, A., Kandeler, E., Kaneko, N., Lavelle, P., Lemanceau, P., Miko, L., Montanarella, L., Moreira, F.M.S., Ramirez, K.S., Scheu, S., Singh, B.K., Six, J., van der Putten, W.H., Wall, D.H. (Eds.), 2016, Global Soil Biodiversity Atlas. European Commission, Publications Office of the European Union, Luxembourg. 176 pp. Paoletti M.G. 1999. Invertebrate biodiversity as bioindicators of sustainable landscapes: practical use of invertebrates to assess sustainable land use. Elsevier Academic press. Wall D.H., Bardgett R.D., Behan-Pelletier V., Herrick J.E., Jones H., Ritz K., Six J., Strong D.R., van der Putten W.H. Soil Ecology and Ecosystem Services 2013. Oxford University Press. Optional reading: Bjarnadottir B., Sungur G.A., Sigurdsson B.D., Kjartansson B.T., Oskarsson H., Oddsdottir E.S., Gunnarsdottir G.E., Black A., 2021. Carbon and water balance of an afforested shallow drained peatland in Iceland, Forest Ecology and Management, 482, 2021, 118861, https://doi.org/10.1016/j.foreco.2020.118861. Decaëns T., Jiménez J.J., Gioia C., Measey G.J., Lavelleb P. 2006. The values of soil animals for conservation biology. European Journal of Soil Biology 42 S23–S38 European Commission 2010. The factory of life. Why soil biodiversity is so important, Luxembourg: Office for Official Publications of the European Communities, doi 10.2779/17050 Ilieva-Makulec K., Bjarnadottir B., Sigurdsson B.D. 2015. Soil nematode communities on Surtsey, 50 years after the formation of the volcanic island. Icelandic Agricultural Sciences, 28, 1, 43-58. Ilieva-Makulec, K.; Tyburski, J.; Makulec, G. 2016. Soil nematodes in organic and conventional farming system: A comparison of the taxonomic and functional diversity, Polish Journal of Ecology, DOI: 10.3161/15052249PJE2016.64.4.010 Sigurdsson, B.D.; Leblans, N.I.W.; Dauwe, S.; Gudmundsdóttir, E.; Gundersen, P.; Gunnarsdóttir, G.E.; Holmstrup, M.; Ilieva-Makulec, K.; Kätterer, T.; Marteinsdóttir, B. et al. 2016. Geothermal ecosystems as natural climate change experiments: The ForHot research site in Iceland as a case study. Icelandic Agricultural Sciences, DOI: 10.16886/IAS.2016.05 Swift M.J., Izac A.-M.N., van Noordwijk M. Biodiversity and ecosystem services in agricultural landscapes—are we asking the right questions? Agriculture, Ecosystems and Environment 104 (2004) 113–134 Turbé A., De Toni A., Benito P., Lavelle P., Lavelle P., Ruiz N., Van der Putten W. H., Labouze E., Mudgal S. 2010. Soil biodiversity: functions, threats and tools for policy makers. Bio Intelligence Service, IRD, and NIOO, Report for European Commission (DG Environment). Walker T.W.N., Janssens I.A., Weedon J.T.,Sigurdsson B.D., Richter A.,Peñuelas J., Leblans N.I.W., Bahn M., Bartrons M., De Jonge C., Fuchslueger L., Gargallo-Garriga A., Gunnarsdóttir G.E., Marañón-Jiménez S., Oddsdóttir E.S., Ostonen I., Poeplau Ch., Prommer J., Radujković D., Sardans J., Sigurðsson P., Soong J.L., Vicca S., Wallander H., Ilieva-Makulec K., Verbruggen E., 2020. A systemic overreaction to years versus decades of warming in a subarctic grassland ecosystem. Nature Ecology and Evolution, 4: 101-108. Web site https://www.skogur.is/static/files/radstefnur/car-es-2021/dagur2/talk-04-_-brynhildur-_-car_es_2021.pdf |
|
Wymagania wstępne: |
basic knowledge on biology and ecology |
Zajęcia w cyklu "Semestr zimowy 2024/25" (zakończony)
Okres: | 2024-10-01 - 2025-01-31 |
Przejdź do planu
PN WT ŚR CZ WYK
PT |
Typ zajęć: |
Wykład, 15 godzin, 20 miejsc
|
|
Koordynatorzy: | Krassimira Ilieva-Makulec | |
Prowadzący grup: | Krassimira Ilieva-Makulec | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Egzaminacyjny
Wykład - Egzaminacyjny |
|
E-Learning: | E-Learning (pełny kurs) z podziałem na grupy |
|
Typ przedmiotu: | obowiązkowy |
|
Grupa przedmiotów ogólnouczenianych: | nie dotyczy |
|
Skrócony opis: |
The aim of the course is to turn the students attention to the soil as a complex habitat of high biological diversity, which supports the functioning of terrestrial ecosystems. The course provides information about the major groups of organisms that live in the soil and their role in the natural and managed ecosystems. A strong emphasis is put on the factors influencing soil biodiversity and the services provided by soil biodiversity. The course offers also some training in sampling and assessing the density and diversity of some soil animal groups and using them as soil biological quality indices. The syllabus takes into account the knowledge gained from the project Wyzwania zrównoważonego rozwoju FRSE, projekt nr EOG/21/K4/W/0028 In the year 2024-2025 the course will be conducted in the form of lectures and will last for 15 hours. |
|
Pełny opis: |
Lectures 1. What is soil? Soil forming factors. Soil as a habitat. Soil structure and soil biota. The role of soil organisms in the processes of soil formation and organic matter transformation. Comparison of the soil-forming processes in Iceland and Poland. 2. Diversity and distribution of soil organisms in Europe - in different ecosystems (natural and managed ecosystems) and different zones (e.g. temperate (Poland) and boreal (Iceland). Patterns of soil biodiversity. 3. Interactions between soil organisms and the soil itself. Epedaphic, hemiedaphic, euedaphic organisms. Geobionts, periodical geophiles, temporarily active geophiles. Adaptations to soil habitat. 4. Size classification of the soil organisms by body width. Macrofauna, meso- and microfauna and microorganisms – main groups, numbers, diversity and their role in the soil. 5. The importance of soil biodiversity. Ecosystem services (supplies, supporting, regulation) provided by soil biota: (decomposing plant and animal residues, transforming and recycling nutrients, storing and releasing water, maintenance of soil structure and fertility, provision of clean drinking water, sequestering and detoxifying organic toxicants, bioremediation of pollutants, pest and pathogen control, erosion control, mitigation of floods and droughts, regulation of atmospheric trace gases). The economic value of soil biodiversity. 6. Use of soil invertebrates in soil biodiversity assessment and as soil biological quality indices (monitoring of pollutant effects; evaluation of environmental impact of agricultural management practices; using soil invertebrates as bioindicators of urban soil quality). Parameters of soil animal communities used for soil quality evaluation. 7. Current threats to soil biodiversity: (contamination (chemicals), soil compaction and sealing, erosion, decline of organic matter, salinisation, landslides, deforestation, climate changes, agricultural practices (deep tillage, the use of chemical fertilisers and pesticides, the removal of crop residues), desertification, acidification). 8. Current threats to soil biodiversity in Poland and Iceland – a comparison. Discussing the research of the ForHot project (Iceland) as a case study on the impact of climate change on biodiversity and soil functioning. Discussing the ongoing expansion of the invasive species (Lupinus arcticus, arctic lupine) in Iceland and its impact on soil life and quality. 9. Management strategies for soil biodiversity restoration, conservation and sustainable production. Practices which tend to promote soil health and practices which tend to reduce soil health in Poland and Iceland. Discussing the research in the WetWood project (Iceland) as a case study to demonstrate the role of afforestation to limit or mitigate GHG emissions from drained peatlands. |
|
Literatura: |
Obligatory reading: Bardgett R. 2005. The Biology of Soil. Oxford University Press. Bardgett R.D. 2015. Earth Matters: How soil underlies civilization. Oxford University Press. Bardgett R.D., Usher B., Hopkins D.W. 2005. Biological diversity and functions in soils. Cambridge University Press. Bardgett R.D., Wardle D.A. 2010. Aboveground-belowground linkages. Biotic interactions, ecosystem processes, and global change. Oxford Series in Ecology and Evolution. Coleman D.C., Crossley D.A., Hendrix Jr. P.F. 2004. Fundamentals of Soil Ecology. Elsevier Academic press. Jeffery S. , Gardi C., Jones A., Montanarella L., Marmo L., Miko L., Ritz K., Peres G., Römbke J. and van der Putten W. H. (eds.), 2010, European Atlas of Soil Biodiversity. European Commission, Publications Office of the European Union, Luxembourg. Lavelle P., Spain A.V. 2005. Soil Ecology. Kluwer Academic Publishers, Dordrecht. Lavelle P.,. Decaëns T., Aubert M., Barot S., Blouin M., Bureau F., Margerie P., Mora P., Rossi J.-P. 2006. Soil invertebrates and ecosystem services European Journal of Soil Biology 42, S3–S15. Orgiazzi, A., Bardgett, R.D., Barrios, E., Behan-Pelletier, V., Briones, M.J.I., Chotte, J-L., De Deyn, G.B., Eggleton, P., Fierer, N., Fraser, T., Hedlund, K., Jeffery, S., Johnson, N.C., Jones, A., Kandeler, E., Kaneko, N., Lavelle, P., Lemanceau, P., Miko, L., Montanarella, L., Moreira, F.M.S., Ramirez, K.S., Scheu, S., Singh, B.K., Six, J., van der Putten, W.H., Wall, D.H. (Eds.), 2016, Global Soil Biodiversity Atlas. European Commission, Publications Office of the European Union, Luxembourg. 176 pp. Paoletti M.G. 1999. Invertebrate biodiversity as bioindicators of sustainable landscapes: practical use of invertebrates to assess sustainable land use. Elsevier Academic press. Wall D.H., Bardgett R.D., Behan-Pelletier V., Herrick J.E., Jones H., Ritz K., Six J., Strong D.R., van der Putten W.H. Soil Ecology and Ecosystem Services 2013. Oxford University Press. Optional reading: Bjarnadottir B., Sungur G.A., Sigurdsson B.D., Kjartansson B.T., Oskarsson H., Oddsdottir E.S., Gunnarsdottir G.E., Black A., 2021. Carbon and water balance of an afforested shallow drained peatland in Iceland, Forest Ecology and Management, 482, 2021, 118861, https://doi.org/10.1016/j.foreco.2020.118861. Decaëns T., Jiménez J.J., Gioia C., Measey G.J., Lavelleb P. 2006. The values of soil animals for conservation biology. European Journal of Soil Biology 42 S23–S38 European Commission 2010. The factory of life. Why soil biodiversity is so important, Luxembourg: Office for Official Publications of the European Communities, doi 10.2779/17050 Ilieva-Makulec K., Bjarnadottir B., Sigurdsson B.D. 2015. Soil nematode communities on Surtsey, 50 years after the formation of the volcanic island. Icelandic Agricultural Sciences, 28, 1, 43-58. Ilieva-Makulec, K.; Tyburski, J.; Makulec, G. 2016. Soil nematodes in organic and conventional farming system: A comparison of the taxonomic and functional diversity, Polish Journal of Ecology, DOI: 10.3161/15052249PJE2016.64.4.010 Sigurdsson, B.D.; Leblans, N.I.W.; Dauwe, S.; Gudmundsdóttir, E.; Gundersen, P.; Gunnarsdóttir, G.E.; Holmstrup, M.; Ilieva-Makulec, K.; Kätterer, T.; Marteinsdóttir, B. et al. 2016. Geothermal ecosystems as natural climate change experiments: The ForHot research site in Iceland as a case study. Icelandic Agricultural Sciences, DOI: 10.16886/IAS.2016.05 Swift M.J., Izac A.-M.N., van Noordwijk M. Biodiversity and ecosystem services in agricultural landscapes—are we asking the right questions? Agriculture, Ecosystems and Environment 104 (2004) 113–134 Turbé A., De Toni A., Benito P., Lavelle P., Lavelle P., Ruiz N., Van der Putten W. H., Labouze E., Mudgal S. 2010. Soil biodiversity: functions, threats and tools for policy makers. Bio Intelligence Service, IRD, and NIOO, Report for European Commission (DG Environment). Walker T.W.N., Janssens I.A., Weedon J.T.,Sigurdsson B.D., Richter A.,Peñuelas J., Leblans N.I.W., Bahn M., Bartrons M., De Jonge C., Fuchslueger L., Gargallo-Garriga A., Gunnarsdóttir G.E., Marañón-Jiménez S., Oddsdóttir E.S., Ostonen I., Poeplau Ch., Prommer J., Radujković D., Sardans J., Sigurðsson P., Soong J.L., Vicca S., Wallander H., Ilieva-Makulec K., Verbruggen E., 2020. A systemic overreaction to years versus decades of warming in a subarctic grassland ecosystem. Nature Ecology and Evolution, 4: 101-108. Web site https://www.skogur.is/static/files/radstefnur/car-es-2021/dagur2/talk-04-_-brynhildur-_-car_es_2021.pdf |
|
Wymagania wstępne: |
basic knowledge on biology and ecology |
Właścicielem praw autorskich jest Uniwersytet Kardynała Stefana Wyszyńskiego w Warszawie.