Uniwersytet Kardynała Stefana Wyszyńskiego w Warszawie - Centralny System Uwierzytelniania
Strona główna

Algebra liniowa [WM-MA-S1-E1-ALL] Semestr zimowy 2022/23
Ćwiczenia, grupa nr 1

Przejdź do planu zaznaczono terminy wyświetlanej grupy
To jest strona grupy zajęciowej. Jeśli szukasz opisu przedmiotu, zobacz stronę przedmiotu
Przedmiot: Algebra liniowa [WM-MA-S1-E1-ALL]
Zajęcia: Semestr zimowy 2022/23 [2022/23_Z] (zakończony)
Ćwiczenia [CW], grupa nr 1 [pozostałe grupy]
Terminy i miejsca: Podana informacja o terminie jest orientacyjna. W celu uzyskania pewnej informacji obejrzyj kalendarz roku akademickiego lub skontaktuj się z wykładowcą (nieregularności zdarzają się przede wszystkim w przypadku zajęć odbywających się rzadziej niż co tydzień).
każda środa, 11:30 - 13:00
sala 1555
Kampus Wóycickiego Bud. 15 jaki jest adres?
każdy piątek, 11:30 - 13:00
sala 314
Kampus Wóycickiego Bud. 21 jaki jest adres?
Terminy najbliższych spotkań: Daty odbywania się zajęć grupy. Prezentują informacje na podstawie zdefiniowanych w USOS terminów oraz spotkań.
Kliknij w datę by zobaczyć tygodniowy plan z zaznaczonym spotkaniem.
Wszystkie zajęcia tej grupy już się odbyły - pokaż terminy wszystkich spotkań.
Data i miejsceProwadzący
Liczba osób w grupie: 30
Limit miejsc: (brak danych)
Prowadzący: Lidia Waśko
Literatura:

1. A.I. Kostrikin, Wstęp do algebry, Cz. I: Algebra liniowa, PWN, Warszawa 2004.

2. S. Zakrzewski, Algebra i geometria, Wydawnictwo UKSW, Warszawa 2006.

3. A. Kostrykin, Zbiór zadań z algebry, PWN, Warszawa 2005.

4. T. Jurlewicz, Z. Skoczylas, Algebra liniowa 1 Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław 2003.

Zakres tematów:

1. grupy, pierścienie, ciała.

2. charakterystyka ciała, elementy odwracalne i dzielniki zera w pierścieniach.

3. Ciało liczb zespolonych. Postać trygonometryczna i wykładnicza. Interpretacja geometryczna.

4. Wzór Moivre’a, potęgi i pierwiastki z liczb zespolonych.

5. Przestrzeń liniowa. Przykłady.

6. Kombinacja liniowa wektorów. Podprzestrzeń. Interpretacja geometryczna.

7. Liniowa niezależność wektorów. Baza przestrzeni.

8. Twierdzenie Steinitza o wymianie. Wymiar przestrzeni.

9. Układy równań liniowych. Macierze.

10. Metoda eliminacji Gaussa.

11. Wyznaczniki. Wzory Cramera.

12. Twierdzenie Kroneckera- Capelliego.

13. Przekształcenie liniowe. Izomorfizm liniowy. Macierz przekształcenia.

14. Jądro i obraz przekształcenia.

15. Twierdzenia dotyczące jądra i obrazu. W zależności od czasu wektory własne i wartości własne przekształcenia.

Metody dydaktyczne i sposoby weryfikacji efektów kształcenia:

Tradycyjne ćwiczenia.

Metody i kryteria oceniania:

Metody oceny: Częste 30-minutowe sprawdziany w trakcie ćwiczeń.

dst od 50% punktów

dst+ od 60% punktów

db od 70% punktów

db+ od 80% punktów

bdb od 90% punktów

Uwagi:

I rok I st.

Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Kardynała Stefana Wyszyńskiego w Warszawie.
ul. Dewajtis 5,
01-815 Warszawa
tel: +48 22 561 88 00 https://uksw.edu.pl
kontakt deklaracja dostępności mapa serwisu USOSweb 7.1.1.0-5 (2025-02-26)