Cardinal Stefan Wyszynski University in Warsaw - Central Authentication System
Strona główna

Molecular biology

General data

Course ID: WB-BI-35-25
Erasmus code / ISCED: 13.1 Kod klasyfikacyjny przedmiotu składa się z trzech do pięciu cyfr, przy czym trzy pierwsze oznaczają klasyfikację dziedziny wg. Listy kodów dziedzin obowiązującej w programie Socrates/Erasmus, czwarta (dotąd na ogół 0) – ewentualne uszczegółowienie informacji o dyscyplinie, piąta – stopień zaawansowania przedmiotu ustalony na podstawie roku studiów, dla którego przedmiot jest przeznaczony. / (unknown)
Course title: Molecular biology
Name in Polish: Biologia molekularna
Organizational unit: Faculty of Biology and Environmental Sciences
Course groups: (in Polish) Przedmioty dla III roku biologii I stopnia
ECTS credit allocation (and other scores): 2.00 Basic information on ECTS credits allocation principles:
  • the annual hourly workload of the student’s work required to achieve the expected learning outcomes for a given stage is 1500-1800h, corresponding to 60 ECTS;
  • the student’s weekly hourly workload is 45 h;
  • 1 ECTS point corresponds to 25-30 hours of student work needed to achieve the assumed learning outcomes;
  • weekly student workload necessary to achieve the assumed learning outcomes allows to obtain 1.5 ECTS;
  • work required to pass the course, which has been assigned 3 ECTS, constitutes 10% of the semester student load.

view allocation of credits
Language: Polish
(in Polish) Dyscyplina naukowa, do której odnoszą się efekty uczenia się:

biological sciences

Subject level:

elementary

Learning outcome code/codes:

BI1_W01, BI1_W03,BI1_W04,BI1_W05,BI1_W06,BI1_W07

Preliminary Requirements:

Basic knowledge of molecular biology and genetics

Short description:

The aim of the course is to acquaint the student with the concept of biology at the molecular level with an emphasis on basic molecular processes occurring in cells, properties and application of molecular markers in the diagnosis of diseases and population genetics, and the possibilities of modern genetic engineering in biological sciences.

Full description:

The course on the subject of "Molecular Biology" includes lectures and exercises. The lectures cover basic issues related to molecular biology. The types of genetic information carriers are presented, taking into account the structure of DNA and RNA in the mitochondrial, chloroplast, and nuclear genomes. The processes related to gene expression (transcription and translation) are discussed, paying particular attention to the factors involved in the regulation of these processes. Moving and palindromic sequences, the origin of introns, pseudogenes, polyploidization, duplication, and the formation of new genes are discussed. Repair mechanisms including modern CRISPR / Cas 9 methods and modern methods used in the genetic engineering of organisms - creating genetic constructs, cloning, artificial chromosomes, and genome editing. Traditional and modern methods of genome research are introduced. The basics and assumptions of diagnostic methods in the sciences of population and forensic genetics are presented, based on the analysis of polymorphic molecular markers, including RAPD, RFLP, AFLP, and SSR.

Bibliography:

Compulsory literature:

Molecular biology. Short lectures. P.C. Turner, A.G. McLennan, A.D. Bates, M.R.H. White. PWN SA, Warsaw, 2012

Molecular markers, natural history, and evolution. J.C. Avise. WUW, Warsaw, 2008

Molecular biology in medicine, edited by J. Bal. PWN SA, Warsaw, 2013

Fundamentals of population genetics. D.L. Hartl, A.G. Clark. WUW, Warsaw, 2009

Genetics. Short lectures. P.C. Winter, G.I. Hickey, H.L Fletcher. PWN Warsaw, 2004

Supplementary literature:

DNA Analysis, Theory and Practice. Collective work edited by Ryszard Słomski. Publishing House of the University of Life Sciences in Poznań 2008.

Introduction to Protein Structure. C. Branden, J. Tooze, Garland Publ.

Source materials from PubMed, NCBI, and scientific publications provided by the teacher during the classes.

Efekty kształcenia i opis ECTS:

Subject effects in terms of knowledge:

Subject effects in terms of knowledge:

Subject effect 1: The graduate knows the rules of building the genetic code at an advanced level, as well as the processes and phenomena of the development and genetic variation of organisms, has a good understanding of the basic phenomena and processes underlying molecular biology

Subject effect 2: has advanced knowledge of the most important problems in various branches of biology, including genetics, cell biology, and biochemistry, necessary for understanding basic natural phenomena and processes, and knows the connections between the above-mentioned sciences and other natural disciplines

Subject effect 3: has advanced knowledge of basic concepts related to DNA, RNA, amino acids, as well as terminology used in molecular biology, and has knowledge of the development of this science and research method used in it today

Subject effect 4: has knowledge of basic techniques and research tools useful for understanding the structure and functions of nucleic acids and proteins, as well as has knowledge of computer science and statistics at a level that allows their use in the analysis of natural phenomena

Subject effect 5: understands the relationship between the achievements of molecular biology and the possibility of its use in socio-economic life, taking into account the sustainable use of biological diversity

Subject effect 6: knows and understands the fundamental dilemmas of modern civilization, including the basic ethical principles of professional work using molecular biology tools, has knowledge of the basic concepts and principles of copyright law regarding selected aspects of molecular biology and related sciences

Objective effects in terms of skills:

Objective effect 7: uses basic techniques of molecular analysis of DNA, RNA and proteins appropriate to the investigated pro-or eukaryotic genome and tools enabling the analysis of polymorphism at the molecular level

Subject effect 8: understands biology literature in Polish; reads and understands simple scientific texts in the field of molecular biology in English

Objective effect 9: uses available information sources, including electronic sources such as NCBI and PubMed

Subject effect 10: performs assigned simple research tasks under the supervision of a research tutor

Subject effect 11: Performs observations and performs simple analyzes in the laboratory used in molecular biology, i.e. PCR

Subject effect 12: learns independently in a targeted manner in the molecular biology of pro-and eukaryotic organisms

Subject effects in the field of social competencies:

Subject Effect 13: Graduate understands the need for lifelong learning in the field of molecular biology

Subject effect 14: can interact and work in a group, assuming different roles in it

Objective effect 15: correctly identifies and resolves dilemmas related to the profession of molecular biology

Objective effect 16: is responsible for the safety of his own and others' work; knows how to act in emergency situations

Subject learning outcomes assigned to lectures (1-6).

Subject learning outcomes assigned to exercises (7-16).

Assessment methods and assessment criteria:

Lecture

The following grading scale applies: 94 - 100% very good (5.0), 88 - 93% plus good (4.5), 80 - 87% good (4.0), 70 - 79% plus satisfactory (3.5), 60 - 69% satisfactory (3.0), less than 59.9% insufficient (2.0). The condition for completing the course is attendance at the classes and active participation of the student in the exercises.

Exercises:

Partial tests of known methods of molecular biology research. The student is required to complete the exercise cards during the laboratories, and also have the ability to search and select appropriate sources (scientific articles and electronic sources, also in English). The student should complete the assigned homework.

Final grade based on partial grades obtained during the semester from tests and activity in classes. Classes are credited if the student: (i) actively participated in at least 85% of the classes; (ii) work in the classroom in a way that allows to positively assess the knowledge, skills, and social competencies obtained in the course of the classes (described in the syllabus as subject learning outcomes 7-16).

The range of grades from the colloquium:

94 - 100% - 5

93 - 88% - 4,5

87 - 80% - 4

79 - 70% - 3,5

69 - 60% - 3

mniej niż 59,9% - 2

For the grade 2 (not passed): The graduate does not know the rules of the structure of the genetic code at an advanced level, as well as the processes and phenomena of the development and genetic variation of organisms, does not understand the basic phenomena and processes underlying molecular biology; does not have advanced knowledge of the most important problems in various branches of biology, including genetics, cell biology and biochemistry, necessary for understanding basic natural phenomena and processes, and does not know the connections between the above-mentioned sciences and other natural disciplines; does not have advanced knowledge in the field of basic concepts related to DNA, RNA, amino acids, or terminology used in molecular biology, and has no knowledge of the development of this science and research methods used in it today; he has no knowledge of basic techniques and research tools useful for understanding the structure and functions of nucleic acids and proteins, and no knowledge of computer science and statistics at a level that allows their use in the analysis of natural phenomena; does not understand at all the relationship between the achievements of molecular biology and the possibility of its use in socio-economic life, taking into account the sustainable use of biological diversity; does not know at all and does not understand the fundamental dilemmas of modern civilization, including the basic ethical principles of professional work using molecular biology tools, has no knowledge of the basic concepts and principles of copyright concerning selected aspects of molecular biology and related sciences.

To grade 3 (passed): At the basic level, the graduate knows the principles of the structure of the genetic code at an advanced level, as well as the processes and phenomena of the development and genetic variation of organisms, at the basic level understands the basic phenomena and processes underlying molecular biology; has intermediate knowledge of the most important problems in various areas of biology, including genetics, cell biology and biochemistry, necessary for understanding basic natural phenomena and processes, and knows the connections between the above-mentioned sciences and other natural disciplines; has intermediate knowledge of the basic concepts related to DNA, RNA, amino acids, as well as terminology used in molecular biology, and has a basic knowledge of the development of this science and research methods used today; has basic knowledge of basic research techniques and tools useful for understanding the structure and functions of nucleic acids and proteins, as well as basic knowledge in the field of computer science and statistics at a level that allows their use in the analysis of natural phenomena; at the basic level, understands the relationship between the achievements of molecular biology and the possibility of its use in socio-economic life, taking into account the sustainable use of biological diversity; knows and understands the fundamental dilemmas of modern civilization, including the basic ethical principles of professional work using molecular biology tools, has average knowledge of the basic concepts and principles of copyright law regarding selected aspects of molecular biology and related sciences.

To grade 4 (well): The graduate has a good knowledge of the advanced rules of the structure of the genetic code, as well as the processes and phenomena of the development and genetic variation of organisms, has a good understanding of the basic phenomena and processes underlying molecular biology; has a thoroughly advanced knowledge of the most important problems in various areas of biology, including genetics, cell biology and biochemistry, necessary for understanding basic natural phenomena and processes, and knows the connections between the above-mentioned sciences and other natural disciplines; has advanced knowledge of basic concepts related to DNA, RNA, amino acids, as well as terminology used in molecular biology, and a good knowledge of the development of this science and research methods used today; has good knowledge of basic techniques and research tools useful for understanding the structure and functions of nucleic acids and proteins, as well as good knowledge of computer science and statistics at a level that allows their use in the analysis of natural phenomena; has a good understanding of the relationship between the achievements of molecular biology and the possibility of its use in socio-economic life, taking into account the sustainable use of biological diversity;

To grade 5 (very well): The graduate knows very well the rules of building the genetic code, as well as the processes and phenomena of development and genetic variation of organisms, very well understand the basic phenomena and processes underlying molecular biology; has a very advanced knowledge of the most important problems in various areas of biology, including genetics, cell biology and biochemistry, necessary for understanding basic natural phenomena and processes, and knows the connections between the above-mentioned sciences and other natural disciplines; has a very advanced knowledge of the basic concepts related to DNA, RNA, amino acids, as well as terminology used in molecular biology, and a very good knowledge of the development of this science and research methods used in it today; has a very good knowledge of basic techniques and research tools useful for understanding the structure and functions of nucleic acids and proteins, as well as a very good knowledge of computer science and statistics at a level that allows their use in the analysis of natural phenomena; understands very well the relationship between the achievements of molecular biology and the possibility of its use in socio-economic life, taking into account the sustainable use of biological diversity; knows very well and understands the fundamental dilemmas of modern civilization, including the basic ethical principles of professional work using molecular biology tools, has a very good knowledge of the basic concepts and principles of copyright concerning selected aspects of molecular biology and related sciences.

Classes in period "Winter semester 2021/22" (past)

Time span: 2021-10-01 - 2022-01-31
Selected timetable range:
Navigate to timetable
Type of class:
Lectures, 30 hours more information
Coordinators: Justyna Nowakowska
Group instructors: Justyna Nowakowska
Students list: (inaccessible to you)
Examination: examination
(in Polish) E-Learning:

(in Polish) E-Learning

Short description:

The aim of the course is to acquaint the student with the concept of biology at the molecular level with an emphasis on basic molecular processes occurring in cells, properties and application of molecular markers in the diagnosis of diseases and population genetics, and the possibilities of modern genetic engineering in biological sciences.

Full description:

The course on the subject of "Molecular Biology" includes lectures and exercises. The lectures cover basic issues related to molecular biology. The types of genetic information carriers are presented, taking into account the structure of DNA and RNA in the mitochondrial, chloroplast, and nuclear genomes. The processes related to gene expression (transcription and translation) are discussed, paying particular attention to the factors involved in the regulation of these processes. Moving and palindromic sequences, the origin of introns, pseudogenes, polyploidization, duplication, and the formation of new genes are discussed. Repair mechanisms including modern CRISPR / Cas 9 methods and modern methods used in the genetic engineering of organisms - creating genetic constructs, cloning, artificial chromosomes, and genome editing. Traditional and modern methods of genome research are introduced. The basics and assumptions of diagnostic methods in the sciences of population and forensic genetics are presented, based on the analysis of polymorphic molecular markers, including RAPD, RFLP, AFLP, and SSR.

Bibliography:

Compulsory literature:

Molecular biology. Short lectures. P.C. Turner, A.G. McLennan, A.D. Bates, M.R.H. White. PWN SA, Warsaw, 2012

Molecular markers, natural history, and evolution. J.C. Avise. WUW, Warsaw, 2008

Molecular biology in medicine, edited by J. Bal. PWN SA, Warsaw, 2013

Fundamentals of population genetics. D.L. Hartl, A.G. Clark. WUW, Warsaw, 2009

Genetics. Short lectures. P.C. Winter, G.I. Hickey, H.L Fletcher. PWN Warsaw, 2004

Supplementary literature:

DNA Analysis, Theory and Practice. Collective work edited by Ryszard Słomski. Publishing House of the University of Life Sciences in Poznań 2008.

Introduction to Protein Structure. C. Branden, J. Tooze, Garland Publ.

Source materials from PubMed, NCBI, and scientific publications provided by the teacher during the classes.

Wymagania wstępne:

Basic knowledge of genetics from high school.

Classes in period "Winter semester 2022/23" (past)

Time span: 2022-10-01 - 2023-01-31
Selected timetable range:
Navigate to timetable
Type of class:
Lectures, 30 hours, 30 places more information
Coordinators: Justyna Nowakowska
Group instructors: Justyna Nowakowska
Students list: (inaccessible to you)
Examination: examination
(in Polish) E-Learning:

(in Polish) E-Learning

(in Polish) Opis nakładu pracy studenta w ECTS:

(in Polish) ECTS [1 ECTS=30 godzin]

Udział w wykładzie - 30h

Przygotowanie do egzaminu -20h

Udział w ćwiczeniach - 45h

Przygotowanie do ćwiczeń – 20h

Przygotowanie do kolokwiów - 20h

Konsultacje - 15h

Suma: 150h [150/30 = 5]


Short description: (in Polish)

Celem przedmiotu jest zapoznanie studenta z pojęciem biologii na poziomie molekularnym z akcentem na podstawowe procesy molekularne zachodzące w komórkach, właściwości i zastosowanie markerów molekularnych w diagnostyce chorób i genetyce populacyjnej, oraz możliwości współczesnej inżynierii genetycznej w naukach biologicznych.

Full description: (in Polish)

Kurs zajęć z przedmiotu „Biologia molekularna” obejmuje wykłady i ćwiczenia. W ramach wykładów omawiane są podstawowe zagadnienia dotyczące biologii molekularnej. Prezentowane są rodzaje nośników informacji genetycznej, z uwzględnieniem struktury DNA i RNA w genomach mitochondrialnym, chloroplastowym i jądrowym. Omawiane są procesy związane z ekspresją genów (transkrypcja i translacja) ze zwróceniem szczególnej uwagi na czynniki uczestniczące w regulacji tych procesów. Omawiane są sekwencje ruchome, palindromowe, pochodzenie intronów, pseudogenów, poliploidyzacja, duplikacja i powstawianie nowych genów. Mechanizmy naprawcze z uwzględnieniem nowoczesnych metod CRISPR/Cas 9 oraz nowoczesne metody stosowane w inżynierii genetycznej organizmów – tworzenie konstruktów genetycznych, klonowanie, sztuczne chromosomy i edytowanie genomu. Przybliżane są tradycyjne i nowoczesne metody badania genomu. Prezentowane są podstawy i założenia metod diagnostycznych w naukach genetyki populacyjnej i sądowej, w oparciu o analizę polimorficznych markerów molekularnych, m.in. RAPD, RFLP, AFLP i SSR.

Bibliography: (in Polish)

Literatura obowiązkowa:

Biologia molekularna. Krótkie wykłady. P.C. Turner, A.G. McLennan, A.D. Bates, M.R.H. White. PWN SA, Warszawa, 2012

Markery molekularne, historia naturalna i ewolucja. J.C. Avise. WUW, Warszawa, 2008

Biologia molekularna w medycynie, pod redakcją J. Bala. PWN SA, Warszawa, 2013

Podstawy genetyki populacyjnej. D.L. Hartl, A.G. Clark. WUW, Warszawa, 2009

Genetyka. Krótkie wykłady. P.C. Winter, G.I. Hickey, H.L Fletcher. PWN Warszawa, 2004

Literatura uzupełniająca:

Techniki laboratoryjne w biologii molekularnej. A. Lewandowska Ronnegren, MedFarm, Wrocław, 2018

Analiza DNA, Teoria i Praktyka. Praca zbiorowa pod redakcją Ryszarda Słomskiego. Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu 2008.

Introduction to Protein Structure. C. Branden, J. Tooze, Garland Publ.

Materiały źródłowe z PubMed, NCBI oraz publikacje naukowe podawane przez prowadzącego w trakcie zajęć.

Classes in period "Winter semester 2023/24" (past)

Time span: 2023-10-01 - 2024-01-31
Selected timetable range:
Navigate to timetable
Type of class:
Lectures, 30 hours more information
Coordinators: Justyna Nowakowska
Group instructors: Justyna Nowakowska
Students list: (inaccessible to you)
Examination: examination
(in Polish) E-Learning:

(in Polish) E-Learning

(in Polish) Opis nakładu pracy studenta w ECTS:

(in Polish) ECTS [1 ECTS=30 godzin]

Udział w wykładzie - 30h

Przygotowanie do egzaminu -20h

Udział w ćwiczeniach - 45h

Przygotowanie do ćwiczeń – 20h

Przygotowanie do kolokwiów - 20h

Konsultacje - 15h

Suma: 150h [150/30 = 5]


Type of subject:

obligatory

(in Polish) Grupa przedmiotów ogólnouczenianych:

(in Polish) nie dotyczy

Short description: (in Polish)

Celem przedmiotu jest zapoznanie studenta z pojęciem biologii na poziomie molekularnym z akcentem na podstawowe procesy molekularne zachodzące w komórkach, właściwości i zastosowanie markerów molekularnych w diagnostyce chorób i genetyce populacyjnej, oraz możliwości współczesnej inżynierii genetycznej w naukach biologicznych.

Full description: (in Polish)

Kurs zajęć z przedmiotu „Biologia molekularna” obejmuje wykłady i ćwiczenia. W ramach wykładów omawiane są podstawowe zagadnienia dotyczące biologii molekularnej. Prezentowane są rodzaje nośników informacji genetycznej, z uwzględnieniem struktury DNA i RNA w genomach mitochondrialnym, chloroplastowym i jądrowym. Omawiane są procesy związane z ekspresją genów (transkrypcja i translacja) ze zwróceniem szczególnej uwagi na czynniki uczestniczące w regulacji tych procesów. Omawiane są sekwencje ruchome, palindromowe, pochodzenie intronów, pseudogenów, poliploidyzacja, duplikacja i powstawianie nowych genów. Mechanizmy naprawcze z uwzględnieniem nowoczesnych metod CRISPR/Cas 9 oraz nowoczesne metody stosowane w inżynierii genetycznej organizmów – tworzenie konstruktów genetycznych, klonowanie, sztuczne chromosomy i edytowanie genomu. Przybliżane są tradycyjne i nowoczesne metody badania genomu. Prezentowane są podstawy i założenia metod diagnostycznych w naukach genetyki populacyjnej i sądowej, w oparciu o analizę polimorficznych markerów molekularnych, m.in. RAPD, RFLP, AFLP i SSR.

Bibliography: (in Polish)

Literatura obowiązkowa:

Biologia molekularna. Krótkie wykłady. P.C. Turner, A.G. McLennan, A.D. Bates, M.R.H. White. PWN SA, Warszawa, 2012

Markery molekularne, historia naturalna i ewolucja. J.C. Avise. WUW, Warszawa, 2008

Biologia molekularna w medycynie, pod redakcją J. Bala. PWN SA, Warszawa, 2013

Podstawy genetyki populacyjnej. D.L. Hartl, A.G. Clark. WUW, Warszawa, 2009

Genetyka. Krótkie wykłady. P.C. Winter, G.I. Hickey, H.L Fletcher. PWN Warszawa, 2004

Literatura uzupełniająca:

Techniki laboratoryjne w biologii molekularnej. A. Lewandowska Ronnegren, MedFarm, Wrocław, 2018

Analiza DNA, Teoria i Praktyka. Praca zbiorowa pod redakcją Ryszarda Słomskiego. Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu 2008.

Introduction to Protein Structure. C. Branden, J. Tooze, Garland Publ.

Materiały źródłowe z PubMed, NCBI oraz publikacje naukowe podawane przez prowadzącego w trakcie zajęć.

Course descriptions are protected by copyright.
Copyright by Cardinal Stefan Wyszynski University in Warsaw.
ul. Dewajtis 5,
01-815 Warszawa
tel: +48 22 561 88 00 https://uksw.edu.pl
contact accessibility statement mapa serwisu USOSweb 7.0.4.0-1 (2024-05-13)