Uniwersytet Kardynała Stefana Wyszyńskiego w Warszawie - Centralny System Uwierzytelniania
Strona główna

Rachunek prawdopodobieństwa i statystyka WM-I-RPS
Wykład (WYK) Semestr zimowy 2022/23

Informacje o zajęciach (wspólne dla wszystkich grup)

Liczba godzin: 30
Limit miejsc: (brak limitu)
Literatura:

Obowiązkowa

1. Tikhonenko O., Tikhonenko A. Metody probabilistyczne. Wykłady i ćwiczenia dla informatyków. Oficyna Wyfawnicza EWSIE. Warszawa 2010.

2. Plucińska A., Pluciński E. Probabilistyka. Wydawnictwa Naukowo-Techniczne. Warszawa 2000.

Uzupełniająca

1. Tikhonenko O., Tikhonenko-Kędziak A. Metody probabilistyczne w naukach ekonomicznych i zarządzaniu. Oficyna Wyfawnicza EU. Warszawa 2013.

2. Hellwig Z. Elementy rachunku prawdopodobieństwa i statystyki matematycznej. Wydawnictwo Naukowe PWN. Warszawa 1995.

Zakres tematów:

1. Dyskretna przestrzeń probabilistyczna. Wzory kombinatoryczne. Schemat klasyczny. Losowanie ze zwracaniem i bez zwracania. Schemat Bernoullego.

2. Przestrzeń probabilistyczna w przypadku ogólnym, aksjomaty rachunku prawdopodobieństwa. Własności prawdopodobieństwa.

3. Prawdopodobieństwo warunkowe. Niezależność zdarzeń. Prawdopodobieństwo całkowite. Wzór Bayesa.

4. Zmienne losowe. Rozkład i dystrybuanta. Własności dystrybuanty. Podstawowe rozkłady. Zmienne losowe dyskretne i ciągłe. Gęstość.

5. Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana, wariancja i odchylenie standardowe, momenty wyższych rzędów, współczynnik korelacji. Nierówność Czebyszewa.

6. Wielowymiarowe zmienne losowe, niezależność zmiennych, rozkłady łączne, brzegowe i warunkowe.

7. Podstawowe typy zbieżności ciągów zmiennych losowych: zbieżność według prawdopodobieństwa i zbieżność według rozkładu. Prawa wielkich liczb w postaci Bernoullego, Czebyszewa i Chinczyna.

8. Twierdzenia Moivre'a-Laplace'a i Poissona i ich zastosowania. Centralne twierdzenie graniczne.

9. Estymatacja punktowa. Estymatory zgodne, obciążone i nieobciążone. Metody momentów i największej wiarygodności.

10. Estymacja punktowa. Estymatory zgodne, obciążone i nieobciążone. Metody momentów i największej wiarygodności.

11. Porównanie estymatorów w sensie średniokwadratowym. Efektywność estymatorów.

12. Podstawowe rozkłady statystyczne (chi-kwadrat, Studenta, Fishera).

13. Estymacja przedziałowa. Dokładne i asymptotycznie dokładne przedziały ufności. Przedziały ufności dla parametrów rozkładu normalnego.

14. Weryfikacja hipotez. Błędy pierwszego i drugiego rodzajów. Moc testu. Testy istotności. Kryterium chi-kwadrat Pearsona.

15. Kryteria zgodności: chi-kwadrat jako kryterium zgodności, omega-kwadrat, Kołmogorowa.

Grupy zajęciowe

zobacz na planie zajęć

Grupa Termin(y) Prowadzący Miejsca Liczba osób w grupie / limit miejsc Akcje
1 każdy wtorek, 13:15 - 14:45, sala 116
Oleg Tikhonenko 49/50 szczegóły
Wszystkie zajęcia odbywają się w budynku:
Kampus Wóycickiego Bud. 21
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Kardynała Stefana Wyszyńskiego w Warszawie.
ul. Dewajtis 5,
01-815 Warszawa
tel: +48 22 561 88 00 https://uksw.edu.pl
kontakt deklaracja dostępności mapa serwisu USOSweb 7.0.4.0-1 (2024-05-13)